THE ROLE OF PLASTICIZERS ON TOOTH DEVELOPMENTAL DEFECTS: A SCOPING REVIEW

Ana Lucia Vollú, Clara Silva Carneiro, Nataly Damasceno de Figueiredo, Carmen Ildes Rodrigues Fróes Asmus, Andréa Fonseca-Gonçalves

Resumo


Abstract
This review evaluated the role of plasticizers on tooth developmental defects (TDD). Six electronic databases were searched without language or date restrictions. Studies with humans and animals that evaluated the effect of any plasticizer on dental structures were considered eligible. From 1,716 studies, nine were included: eight experimental studies with rats and one case-control in humans. All studies observed TDD clinically that verified enamel opacities (n=8) and shorter incisors with blunted tips (n=1). Bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) were associated to TDD. Children of pregnant women exposed to BPA are 2.9 times more likely to have Molar Incisor Hypomineralisation (MIH); and rats exposed to BPA + fluoride presented more severe enamel defects. One article states that male rats exposed to BPA had more enamel defects during amelogenesis due to disruption of estrogen receptors; other three observed lower amounts of calcium and phosphorus from teeth of rats treated with BPA. Two papers reported that rat molar surfaces were opaque and rough in the BPA group, while another showed besides opacities, scratches, and enamel breakdown in incisors of rats exposed to DEHP. Almost of all investigated proteins and genes affected by BPA (n=7) and DEHP (n=1), and detected alterations in levels of the Enamelin, Amelogenin, Ameloblastin, and polymorphisms in H3K27me3, Klk4 and Mmp12 genes. BPA and DEHP exposure leads to enamel defects and changes in length and shape of the incisors of rats. BPA transmutes preferentially amelogenesis in male rats and may be a causative agent of MIH in humans.
Keywords: Plasticizers; Bisphenol A; Phthalic Acids; Tooth Abnormalities; Dental Enamel Hypoplasia

Resumo
Avaliou-se o papel dos plastificantes nos defeitos de desenvolvimento dentário (DDD). Estudos em humanos e animais que avaliaram o efeito de qualquer plastificante nos dentes foram elegíveis. De 1.716 estudos, nove foram incluído: oito experimentais em ratos e um caso-controle em humanos. Todos observaram DDD clinicamente (em oito, opacidades de esmalte e, em um, incisivos mais curtos com bordas rombas). Entre os plastificantes, Bisfenol A (BFA) e di(2-etilhexil)ftalato (DEHP) estavam associados com DDD. Crianças de mães expostas, na gestação, ao BFA são 2.9 vezes mais sujeitas a hipomineralização molar incisivo (HMI); já em ratos, se expostos ao BPA+fluoreto, apresentaram defeitos de esmalte (DE) mais severos. Um artigo afirmou que ratos machos expostos ao BFA têm mais DE durante a amelogênese devido à ruptura dos receptores de estrogênio; outros 3 observaram níveis menores de cálcio e fósforo nos dentes de ratos tratados com BFA. Dois manuscritos reportaram que as superfícies de molares de ratos eram opacas e rugosas no grupo BFA, enquanto outro, mostrou, além das opacidades, arranhões e quebra do esmalte em incisivos de ratos expostos ao DEHP. Quase todos investigaram proteínas e genes afetados pelo BFA (n=7) e DEHP (n=1), e detectaram alterações nos níveis de enamelina, amelogenina, ameloblastina, além de polimorfismos nos genes H3K27me3, Klk4 e Mmp12. Exposição a BFA e DEHP leva a DE e mudanças no comprimento e forma de incisivos em ratos. Além disso, o BFA altera preferencialmente a amelogênese em ratos machos e pode ser um agente etiológico de HMI em humanos.
Palavras chave: Plastificantes; Ácidos Ftálicos; Anormalidades Dentárias; Hipoplasia do Esmalte Dentário

Palavras-chave


Plasticizers; Bisphenol A; Phthalic Acids; Tooth Abnormalities; Dental Enamel Hypoplasia

Texto completo:

20

Referências


REFERENCES

Global Market Insights.2019.https://www.gminsights.com/industry-analysis/phenol-derivatives-market.Acessed 09 Jan 2022.

Bui AT, Houari S, Loiodice S, Bazin D, Sadoine J, Roubier N, et al. Use of Dental Defects Associated with Low-Dose di (2-Ethylhexyl) Phthalate as an Early Marker of Exposure to Environmental Toxicants. Environ Health Perspect. 2022; 130(6): 67003. doi: 10.1289/EHP10208.

Jedeon K, Houari S, Loiodice S, Thuy TT, Le Normand M, Berdal A, et al. Chronic exposure to bisphenol A exacerbates dental fluorosis in growing rats. J Bone Miner Res. 2016a; 31(11): 1955–1966.

Pirard C, Sagot C, Deville M, Dubois N, Charlier C. Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environ Int. 2012; 48: 78-83.

Malarvannan G, Onghena M, Verstraete S, van Puffelen E, Jacobs A, Vanhorebeek I, et al. Phthalate and alternative plasticizers in indwelling medical devices in pediatric intensive care units. J Hazard Mater. 2019; 363: 64-72. doi: 10.1016/j.jhazmat.2018.09.087.

Song Y, Hauser R, Hu FB, Franke AA, Liu S, Sun Q. Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women. Int J Obes (Lond). 2014; 38(12): 1532–1537.

Sun Q, Cornelis MC, Townsend MK, Tobias DK, Eliassen AH, Franke AA, et al. Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses’ Health Study (NHS) and NHSII cohorts. Environ Health Perspect. 2014; 122(6): 616–623.

Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol. 2014; 44(2): 121–150.

Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011; 127(1–2): 27–34.

Beronius A, Rudén C, Håkansson H, Hanberg A. Risk to all or none? A comparative analysis of controversies in the health risk assessment of Bisphenol A. Reprod Toxicol. 2010; 29: 132–146.

Jedeon K, Dela Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol. 2013; 183: 108–18.

Jedeon K, Loiodice S, Marciano C, Vinel A, CanivencLavier MC, Berdal A, et al. Estrogen and bisphenol A affect male rat enamel formation and promote ameloblast proliferation. Endocrinology. 2014a; 155(9): 3365–3375.

Clarkson J, O’Mullane D. A modified DDE Index for use in epidemiological studies of enamel defects. J Dent Res. 1989; 68(3): 445–450.

Rosenfeld CS. Effects of maternal diet and exposure to bisphenol A on sexually dimorphic responses in conceptuses and offspring. Reprod Domest Anim. 2012 Aug; 47 Suppl 4:23-30. doi: 10.1111/j.1439-0531.2012.02051.x.

Li H, Cui D, Zheng L, Zhou Y, Gan L, Liu Y, et al. Bisphenol A Exposure Disrupts Enamel Formation via EZH2-Mediated H3K27me3. J Dent Res. 2021 Jul; 100(8): 847-857. doi: 10.1177/0022034521995798.

Seow WK. Effects of preterm birth on oral growth and development. Aust Dent. 1997; 42: 85-91.

Bensi C, Costacurta M, Belli S, Paradiso D, Docimo R. Relationship between preterm birth and developmental defects of enamel: A systematic review and meta-analysis. Int J Paediatr Dent. 2020 Nov; 30(6): 676-686. doi: 10.1111/ipd.12646. [18] Suga S. Enamel hypomineralisation viewed from pattern of progressive mineralisation of human and monkey developing enamel. Adv Dent Res.1989;3:188–98.

Lunt RC & Law DB. A review of the chronology of eruption of deciduous teeth. JADA. 1974; 89.

McCall JO & Wald SS. Clinical dental roentgenology. Philadelphia, W.B. Saunders Co; 1940.

Wagner Y. Developmental defects of enamel in primary teeth - findings of a regional German birth cohort study. BMC Oral Health.2017; 17: 10.

Elfrink MEC, Moll HA, Kiefte-de Jong JC, Jaddoe VWV, Hofman A, Ten Cate JM, et al. Pre- and Postnatal Determinants of Deciduous Molar Hypomineralisation in 6-Year--Old Children. The Generation R Study. PLoSONE. 2014; 9(7): 1-8.

Jacobsen PE, Haubek D, Henriksen TB, Østergaard JR, Poulsen S. Developmental enamel defects in children born preterm: a systematic review. Eur J Oral Sci. 2014; 122: 7–14.

Rugg-gunn AJ, Al-mohammadi SM, Butler TJ. Malnutrition and developmental defects of enamel in 2- to 6-year-old Saudi boys. Caries Res. 1998; 32(3): 181-92.

Tricco AC, Lillie E, Zarin W, O’brien KK, Colquhoun H, Levac D. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018; 69: 467-473.

Joanna Briggs Institute. Joanna Briggs Institute Reviewers’ Manual.2015.https://jbi.global. Acessed 09 Jan 2022.

Martin N, Sheppard M, Gorasia G, Arora P, Cooper M, Mulligan S. Awareness and barriers to sustainability in dentistry: A scoping review. J Dent. 2021 Sep; 112: 103735. doi: 10.1016/j.jdent.2021.103735.

Jedeon K, Marciano C, Loiodice S, Boudalia S, Canivenc Lavier MC, Berdal A, et al. Enamel hypomineralization due to endocrine disruptors. Connect Tissue Res. 2014b; 55(S1): 43–47. doi: 10.3109/03008207.2014.923857. PMID: 25158179.

Jedeon K, Berdal A, Babajko S. Impact of three endocrine disruptors, bisphenol A, genistein and vinclozolin on female rat enamel. Bull Group Int Rech Sci Stomatol Odontol. 2016b; 53(1): 28-32.

Duman C, ÖzkanYenal N, Menteş A. How prenatal environmental factors affect rat molar enamel formation? Odontology. 2022; 110(4): 655-663. doi: 10.1007/s10266-022-00699-4.

Elzein R, Chouery E, Abdel-Sater F, Bacho R, Ayoub F. Molar-incisor hypomineralisation in Lebanon: association with prenatal, natal and postnatal factors. Eur Arch Paediatr Dent. 2021;22(2): 283-290. doi: 10.1007/s40368-020-00555-5.

Soto AM, Sonnenschein C, Chung KL et al. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995;103: 113–22.

Prusinski L, Al-Hendy A, Yang Q. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets. Gynecol Obstet Res. 2016; 3(1):1-6. doi: 10.17140/GOROJ-3-127.

Reed SG, Miller CS, Wagner CL, Hollis BW, Lawson AB. Toward Preventing Enamel Hypoplasia: Modeling Maternal and Neonatal Biomarkers of Human Calcium Homeostasis. Caries Res. 2020; 54(1): 55-67. doi: 10.1159/000502793.

Costa FS, Silveira ER, Pinto GS, Nascimento GG, Thomson WM, Demarco FF. Developmental defects of enamel and dental caries in the primary dentition: a systematic review and meta- analysis. J Dent. 2017; 60:1-7.

Witzel C, Kierdorf U, Schultz M, Kierdorf H. Insights from the inside: histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. Am J Phys Anthropol. 2008; 136(4): 400–14.

Alaluusua S, Kiviranta H, Leppaniemi A, et al. Natal and neonatal teeth in relation to environmental toxicants. Pediatr Res. 2002; 52(5): 652–5.

Schwendicke F, Elhennawy K, Reda S, Bekes K, Manton DJ, Krois J. Global burden of molar incisor hypomineralization. J Dent. 2018; 68: 10–8.

Bartlett JD, Dwyer SE, Beniash E, Skobe Z, Payne-Ferreira TL. Fluorosis: a new model and new insights. J Dent Res. 2005; 84(9): 832–6.

Shekar C, Cheluvaiah MB, Namile D. Prevalence of dental caries and dental fluorosis among 12 and 15 years old school children in relation to fluoride concentration in drinking water in an endemic fluoride belt of Andhra Pradesh. Indian J Public Health. 2012; 56(2): 122–8.

Sudhir KM, Prashant GM, Subba Reddy VV, Mohandas U, Chandu GN. Prevalence and severity of dental fluorosis among 13- to 15-year-old school children of an area known for endemic fluorosis: Nalgonda district of Andhra Pradesh. J Indian Soc Pedod Prev Dent. 2009; 27(4): 190–6.

Lunardelli SE, Peres MA. Prevalence and distribution of developmental enamel defects in the primary dentition of pre-school children. Braz Oral Res.2005; 19(2):144-9.

Hu JC-C, Hu Y, Lu Y, Smith CE, Lertlam R, et al. Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation. PLoS ONE.2014; https://doi.org/10.1371/journal.pone.0089303

Lu Y, Papagerakis P, Yamakoshi Y, Hu JCC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem. 2008; 389(6): 695–700.


Apontamentos

  • Não há apontamentos.


visitas

Indexadores: