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Abstract: The teaching of astronomy in Brazil has primacy for the quality and objectivity, both in the undergraduate and graduate 

schools, especially in the classrooms of the School of Astronomy at the Valongo Observatory, belonging to the Federal University of 

Rio de Janeiro. However, and this is a generalized fact in the process of teaching/learning at all levels, there is not much incentive in 

Brazil to develop the capacity of one freely mine a problem and propose an original solution. The requirements are very much about 

what is already known, without giving space and time to the fundamental questions underlying the current astrophysical and 

cosmological models. As a consequence, very little real contribution comes out from our offices and instruments. This pedagogical 

article is an attempt to show how to propose an original approach to teaching and to exercise freedom of thought in the search of the 

main elements for the construction of knowledge about the basics on stellar interiors, an issue far more theoretical than one can imagine 

at first. Also it summarizes aspects and results arising from simulations on polytropic models. The simulations emerged from what I 

called "luminothermic fitting". The study was developed on the comparison between the adaptive stellar interior model given by 

Novotny (1973) and the toy model constructed from a FORTRAN program, introducing initially the same parameters. I considered the 

abundances of hydrogen (X) and metals (Z) worth 0.70 and 0.02 respectively.  
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Nomenclature  

G: gravitational constant  
P: pressure  
M ( r ): global mass as a function of the stellar radius 
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Greek letters 
ρ (r): density as a function of the stellar radius 

σ: Stefan-Boltzmann constant 
 

1. Introduction 

   Doing well to characterize present model as a "toy" 
model, I remember that, although modern stellar 
evolution models contain much more physics details, the 
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empirical limits remain the same: nobody went inside a 
star to measure its physical properties; stars are 
tremendously turbulent bodies and unimaginably hot. 
Apart the emerging field of asteroseismology [9], 
enabling us to perform a more direct observational study 
of stellar interiors, the inner side of the stars are 
effectively unseen to external observers, so that all the 
information we receive from them originates in their 
atmospheres. Everything we really have is a consistent set 
of hypotheses and presuppositions based in great part on 
very simplistic propositions; such propositions were 
applied and treated in the classical literature ([3], [4], [11], 
[13]). Of course, there are milestone works on stellar 
structure elsewhere that deal with the subject in great 
depth ([1], [2], [5], [6], [7], [8], [9], [10], [12]). Thus, what 
I shall explain is a simple and heuristic mathematical 
model to undergraduate students in order to aim them to 
construct the first knowledge on stellar astrophysics. I 
strongly recommend to the students the textbook 
introduction on the basic elements of fundamental 
astronomy and astrophysics by Bohm-Vitense (1992) [3], 
mainly the first half of the book 1, explaining how stellar 
radii, luminosities, masses and temperatures are measured 
or deduced. 

   The study of stellar interiors has the aim to determine 
the internal variation of the main physical properties of 
the stars. To simplify this difficult task, we introduce 
some approximate representations to quantify the physics 
within these wonderful objects. Combining the general 
polytropic modeling with few additional assumptions, we 
can obtain beautiful and consistent results. 

The concept of polytropic star refers to very simplified 
models about the internal variability of the main 
properties of the stars as we shall see ahead. Such models 
are represented by systems of equations that express the 
relevant physical processes related to those properties. 
The simplified character of these models allows one to 
obtain analytical or numerical solutions for the 
representative equations, solutions which describe the 
variations in question. 

In stellar interiors it is supposed that 1) - conditions 
change slowly over many photon mean free paths and 2) - 
stellar matter is close to local thermodynamic 
equilibrium. These assumptions lead to a step-by-step 
smooth transition of state, becoming simple the 
integration of the transfer equation. Despite the fact that 
this is a job with a high degree of uncertainty, the 
determination of temperature is crucial in stellar physics, 
both to locate the star in the HR diagram and to support 
studies on abundances and gravity. So, once we consider 
the mass and chemical composition fixed, the challenge I 
took was to obtain from a certain FORTRAN program 
(named Interior2007, implemented at Valongo 
Observatory, 2007) a realistic model of stellar interior by 
the adjustment of the effective temperature, preserving the 
dimensions of the object and the surface density by the 
concomitant adjustment of luminosity. This kind of 
tuning was called luminothermic fit. This option seemed 
quite reasonable when you consider that in the chosen 
example, the error in the stellar radius remained on 
average below 5%. The distancing of the initial 
temperature was within two orders of magnitude, being 
quite understated. Also the decay of the radial luminosity 
remained over a gentle relaxation. 

The idea of including changes in the program 
Interior2007 in order to make realistic models of stellar 
interiors by luminothermic adjustment, with no change in 
radius, mass or surface density, is perfectly feasible for 
simulations with low error in the radius and, at least in 
principle, for stars with masses not much larger than the 
Sun, that is, stars having surface temperatures of a few 
thousand degrees Kelvin. Although I have no rights over 
the distribution of the FORTRAN program used, I do not 
see difficult to build a similar code in any other language 
for the calculations discussed here, easily found in the 
literature mentioned at the end of this article. 

It is noteworthy that the luminothermic fit does not 
intend in any way to exhaust the subject, just start the 
complex task of building feasible models. 
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2. Methodology 

   The prior existence of a temperature gradient in the 
star is the guaranty that the flow of energy in one direction 
overcomes the energy flow in the opposite direction, 
generating a resulting non-zero stream-oriented from the 
hottest regions to the cooler. In addition, among the three 
different mechanisms by which this flow of energy can be 
realized — radiation, conduction and convection —, 
radiation is by far the most important.  

 

2.1 - The essential on polytropic approach 

   An extensive discussion on polytropic models was 
made in my doctoral thesis [14], from which I reproduce 
here a fragment. To understand the degree of 
simplification of the theory in focus, we should start from 
the premise of the hydrostatic equilibrium, according to 
which the force of gravity and the pressure across the 
layershell with radius r obey the stationary condition  
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from which we deduce, for a spherical star, 
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In present explanation, P is the pressure, ρ(r) is the density 
at radius r, M ( r ) is the global mass at radius r, and G is 
the usual gravitational constant. From the second equation 
of the system (1), 
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Following, since the equation of state that describes the 

polytropic star has the form 1 1/ ,nP K   with n (the 

polytropic index) and K being constants throughout the 
star,   
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   To establish the boundary conditions of the problem, it 
is interesting to adopt the following replacements: 

,r ax .nby   

   To the center of the star, r  0, x  0. In these 
circumstances, it is convenient that y  1, so that  
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n
c cy       (at the center). 

 
Similarly, for the surface we have 
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   The solution of this last equation, called the 
Lane-Emden equation, determines the internal structure 
of the polytropic stars. Polytropic modeling of stars is 
closely related to predictions provided by Eddington’s 
assumption that gas pressure and radiation (pushing 
everything outward the star), and gravity (pulling 
everything toward the center of the star) establish an 
internal stellar balance. Eddington’s theory works with 
pressure, temperature and density, linked by the law of 
perfect gases. However, it is important to note that 
Lane-Emden equation is deduced without any 
considerations about the transport of energy in question 
because it assumes that this transport is implicitly 
determined by the polytropic equation itself.  
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2-2. The simulations 

   In general, all simulations performed were done by 
the same way. The initial step was to match the table of 
Novotny with the tables generated by the FORTRAN 
program, using as key-field the radius of the first table, 
obtaining by approximation the best correspondence 
between the registers and keeping the average error in 
radius < 5%. The first generations of tables showed 
quantities without physical meaning, such as negative 
luminosities. Assuming the polytropic approach and the 
application of the luminothermic fitting, that is, the tuning 
of luminosity and effective temperature, the iterations 
have taken place until the complete eradication of 
inappropriate quantities. Thereafter, my work focused on 
the establishment of the combined values of L and Teff, so 
that I got as better luminothermic approach to the 
Novotny modeling the hereunder scenario: 

;1) 1 SunM M  

;2) 0.38 SunL L  

;3) 1.0763 SunR R  

4) 3380 K;effT    

5) 0.002146s  (at the surface); 

6) 0.70;X   

7) 0.02.Z   

The luminosity L of a star, that is, the rate of energy 
emitted per unit time at all frequencies and directions 
crossing a spherical surface, is related to the bolometric 
magnitude M  in terms of solar luminosity by the 
expression 

           0.4( )10 ,                (6)SunM M
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33where 3.83 10 / .SunL erg s   

    

   The effective temperature is given by 

4 ( ) ,effT B T d
 


   

where v is the frequency and Bv (T) is the Planck function 
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with h being the Planck constant, c the velocity of light 
and k = 1.38x10-16 erg/K. The Stefan-Boltzmann 
constant is defined as 

5 2 4 15.67 10  Kerg cm s      . 

   The above scenario refers to a reddish star, colder, 
therefore, than the sun, but with the same mass occupying 
a volume a bit higher. Due to this small volume 
difference, it did not seem unreasonably the searching for 
a viable model without changing the weight-spatial 
dimensions of the Novotny model. 

   The interior modeling was extremely sensitive to 
luminothermic variations. A small change in effective 
temperature or luminosity was sufficient to cause physical 
inconsistencies. Thus, it was necessary to integrate the 
magnitudes involved repeatedly for fixed values of 
luminosity and effective temperature very close to each 
other, until the rescue of consistent scenarios. Additional 
comparative tests with the same basic results, however, 
not published here, were made for a similar 
luminothermic model, assuming L = 0.578 LSun and R = 
1.021 RSun (Schwarzschild, 1965). 
 

3. Results 

   Figures 1, 2 and 3 show qualitatively reasonable 
values for density, temperature and pressure by 
comparing the toy model with the Novotny model, 
highlighting the moderate discrepancy in the values close 
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to the center. Indeed, the betterment of the central 
discrepancy occurred with the reduction in surface 
luminosity concomitant to the reduction in effective 
temperature, although it is risky to say without more 
accurate investigations this continues to happen for cooler 
stars maintaining physical sense. A fact is that for a star 
somewhat weaker, with L=0.28LSun and Teff = 2800oK, 
this trend of improvement in modeling the central region 
of stars seems to be confirmed in accordance with the 
obtained graphics (Figures 11 and 12). 

    Figure 4 shows a comparison between the 
temperature curves in both models, but with the inclusion 
of a logarithmic regression from the toy model. Note that 
the regression curve gives a reasonable approximation to 
the Novotny model mainly from the middle of the radius 
till the surface of the star, serving also as a possible 
theoretical basis for future implementations in 
FORTRAN program with respect to the refinement of the 
modeling of semi-solar stars. The program was modified 
to produce one more column in the final file containing 
the logarithmic adjustment to be applied to radial 
temperature from the toy model (Figure 5). 

    Figure 6 displays the luminosity curve of the Novotny 
model, showing semi-logistic shape. Notice that although 
a range of values is not properly adjusted by the 
FORTRAN program, the luminosity in toy model shows a 
similar way (Figure 7) and fits very well to a sixth order 
polynomial regression. Unlike the logarithmic regression, 
which was applied as a good approximation to many 
luminothermic variations in a range of effective 
temperatures from 2600 K to 6600 K , no exhaustive 
tests were done in this study on the polynomial regression 
of luminosity in other semi-solar stars. 

   Figure 8 fits gas pressure and radioactive pressure in 
the toy model, while Figure 9 shows that the electron 
scattering dominates as an opacity1 factor only in a very 

                                                
1 Opacity, or transparence, is an important property of the stellar 
medium, determining the efficiency of the energy transport by 

short fraction of the radius (0.1%), and was immediately 
supplanted by the bound-free transition and then by 
free-free transition at 8% of the radius. 

   Figure 10 shows the rates of energy generation over the 
temperature with a sensitive record of the viability of the 
CNO cycle from approximately 2X107oK, corresponding 
to a fraction of the radius of about 10% from the center. 
As might be expected, the proton-proton chain seems the 
more important rule valid for stars of mass less than or 
equal to the solar mass.  
 

4. Conclusion 

   Despite the fact of the great complexity of stellar 
interiors, due to the high degree of interdependence of the 
variables in question, this article showed the possibility of 
simplifications in the initial study of stars with semi-solar 
dimensions, analyzing a hypothetical structure clearly 
plausible. Although qualitatively reasonable results have 
been found, I cannot guarantee that the program 
FORTRAN be able to properly emulate all the data of 
Novotny because of some functional differences found in 
the simulations produced. Better luminothermic 
approximations can be consummated with superior 
computational resources to allow parallel simulations to 
high processing speeds, even capable of performing 
real-time covariant analysis of the impact caused by small 
simultaneous changes in the values of each intervening 
variable. I suggest to those interested in astrophysics the 
experience with similar initiatives, though their academic 
environments may not be very enthusiastic for creative 
and independent research.  
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  Figure 1- Temperature in Novotny and in the toy-model. 
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        Figure 2 - Density in Novotny and in the toy-model. 

 

 

 

 

 
       Figure 3 - Pressure in Novotny and in the toy-model. 
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Figure 4 -Temperature in Novotny and in the toy-model with 

         logarithmic regression from the latter. 

 

 

 
        Figure 5 - Logarithmic radial fit for temperature accordingly 

          the toy-model. 

 
 
 
 

 
 
 
 

 
Figure 6 - Luminosity in Novotny. 

 

 

 
Figure 7 - Luminosity in the toy model with polynomial regression of 6th 

order. 
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Figure 8 - Gas pressure and radioactive pressure in the toy model. 

 

 

 
 

 
Figure 9 - Opacity in the toy model. 

 
 

 
 
 
 
 
 

 

Figure 10 - Energy production in the toy model. 

 
 
 
 

 
  Figure 11 - Temperature in the model with L=0.28LSun and Teff = 2800oK,   

and in the toy model. 
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Figure 12 - Pressure in the model with L=0.28LSun 

             and Teff = 2800oK , and in the toy model. 

 
 

 


