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Bertrand Russel

Introitus

Thesaurus Theoriis Circa Gravitatis et Cætera is a compilation subdivided
into two chapters, containing the complete research developed during au-
thor's post-doctoral period at the Brazilian Center of Physics Research �
CBPF, Rio de Janeiro (2016 � 2017). From the heated discussions that took
place in a climate of intense knowledge exchange, additions were made to
the original text, making it more translucent to the readers.

In the �rst chapter, the lecture notes related to the Summer Forma-
tive Activities � 2017 were meant to compile the main ideas on gauge �eld
theory and modern cosmology, showing the recent contributions of the au-
thor in these areas, especially in classical thermodynamics, supergravity
and quantum gravity. Although the author has conducted the work with-
out wishing to exhaust the issues in question, this synthesis provides some
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essential formal aspects for further studies, with relevant and updated ref-
erences, as well as indications of classical readings. Special attention was
given to author's application of Lyra's geometry, because of its growing
importance in quantum cosmology, and to the so-called �paleogravity�, a
model of supergravity developed by the author with the purpose to o�er
a classical representation for supergravity that could be made compatible
with the quantum theory of spacetime also developed by himself. Also in
general cosmology, the emphasis was on inhomogeneous models because of
the debate that they open on the validity of the standard model. In this
sense, the author presented his perturbative formalism of weak gravitational
lensing by de�ning an inhomogeneous cosmological refractive index within
a Lemaître-Tolman universe. Lastly, some remarks on Stephani cosmology
were organized in order to expose the most signi�cant features of this ap-
proach. During the reading, it shall be possible to observe some title marks
indicating items of interest, as well as small side texts with outgivings of
renowned authors.

In the second chapter, the author expanded the discussion about the
quantization of spacetime, previously opened, deepening his phenomeno-
logical analysis at the surroundings of supermassive bodies with the aid of
the formalism of Green's functions. This approach also opens the way for a
broader and dialectical debate on quantum gravity and supergravity, seek-
ing to rescue a physical discourse and not merely the math exercise which
has been predominant in some research groups.

The author is immensely grateful to the colleagues and external partic-
ipants for the contributions and a�ection with which he was received and
from which a community of collaborative studies was formed on the most
important topics in modern physics. Special thanks goes to our esteemed
Professor Helayël, to whom the author directs his highest respects and
wishes for a long and brilliant future.
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CHAPTER I
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I PART: GAUGE

1 General approach to gauge �eld theory

In his beautiful book �The Dawning of Gauge Theory� [28] O'Raifeartaigh
says that the fundamental idea contained in the gauge symmetry is that if a
system remains invariant under a rigid group of continuous transformations
(independent of spacetime), then it remains invariant if the group is taken
locally (depending on spacetime). Having in mind Lagrangian formalism,
we want theories where the Lagrangian density is invariant under internal
symmetry transformations that depend on the point in spacetime. If such
symmetry implies a dynamic, i.e., a natural description of the appropriate
interactions of the theory, then there is a signi�cant gain to the under-
standing of the physics running in the system under consideration. Thus,
the application of the gauge principle consists in the introduction of new
�elds in the Lagrangian to remove the terms of symmetry breaking of this
Lagrangian. This profound principle, which the hard history dates back to
the twenties and thirties of the twentieth century, is applied to both quan-
tum and classical situations, being in full compliance with general relativity
(GR). Typical continuous transformations applied to quantum �elds are The

elevation of

the gauge

�elds to the

level of the

gravitatinal

�eld is a

substantial

achievement,

but is by no

means the

end of the

story

(O'Raifeart-
aigh, 1997).

unitary transformations of complex phase from which numerical relation-
ships between vectors and operators are kept. So, local symmetries change
of phase (rotate) at any angle in the complex plane. In Section 1.2 we shall
explain an application of the gauge principle in classical thermodynamics.
Since the classical �elds of the theory to be presented are complex �elds,
it seemed quite natural to introduce complex phase transformations in the
same spirit as in quantum �eld theory, even for future quantization of the
model if necessary. Throughout the development as it follows, we shall have
the opportunity to see how the Lagrangian loses symmetry and how we can
restore this symmetry. There are several milestone works on gauge theories
(the major of them is in reference [28]), so that our approach emphasizes
heuristic and teaching aspects as regards the implementation of a gauge
theory. Beginners who wish to learn more about the subject can �nd a
great introduction in �https://terrytao.wordpress.com/2008/09/27/what-
is-a-gauge/�. A simple and very illustrative work came from Huang [15]
where the gauge �eld is presented as a �ber bundle over spacetime and the
gauge vector slides independently along its �ber at each point of spacetime
(Figure 1). For physicists more experienced, a good reference is the old book
of Narlikar and Padmanabhan [26], containing a complete presentation of
the gauge principle.



6 Nilo Silvio Costa Serpa

Fig. 1: The �ber bundle of the gauge �eld.

1.1 A real situation treated by classical �eld theory

In the aforementioned work, O'Raifeartaigh talks about the di�culties
faced at the dawning of gauge theory [28]. From that explanation, adding
some enhancements, we can resume the history of gauge theory in four
great stages: It is important to note that much of the essential texts on
gauge theory remained in German for a long time, and some are still
hardly found in translated versions, a fact that has impeded the full
access to such documents by the majority of the scienti�c community
not familiarized with the language. For this reason and also because of
its distinct theoretical structure, unfortunately Lyra's gauge approach is
not commonly treated in the general context of gauge theories, but the
cogency of the insights contained in it can not be ignored at all, especially
in modern quantum cosmology. Also, in the above stages, indeed very
summarized here, there is relatively little contribution from the point of
view of the application of gauge theories in classical domain, perhaps
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because of the illusion that classical physics is a �nished discipline (this
section shows precisely the opposite). It is true that there is also the fear
of polemicize the sacred areas of physics, which is not justi�able since it
belongs to the very nature of science the character to be changeable and
re�neable. Commenting on why Lorenz did not consecrate the relativity Gauge-

dependent

quantities

can not be

predicted,

but there is a

sense in

which they

can be

measured.

They

describe

�handles�

though which

systems

couple: they

represent

real

relational

structures to

which the ex-

perimentalist

has access in

measurement

by supplying

one of the

relata in the

measurement

procedure

itself

(Rovelli,
2014).

of space and time, having done all the legwork, Dirac said

�I think he must have been held back by fears, some kind of inhibi-
tion. He was really afraid to venture into entirely new ground, to question
ideas which had been accepted from time immemorial� [8].

Only Einstein was able to take the bold leap.

There are scant references on gauge theory applied in classical context
other than that of general relativity. In condensed matter, a rare and some-
what dense exception was made by Kleinert [18]. The text as a whole is
rather formal and in several sections of the initial part it does not excels in
its clarity, but the basic idea is simple. Disregarding quantum e�ects and
analyzing the equilibrium structure of a crystalline material atomic system
at zero absolute temperature (a perfectly regular array of atoms known as
the �ground state� of the referred system), Kleinert begins to describe the
slight shift of that array from a weak perturbation by the corresponding
typical �phonons� (the elastic sound waves) of the low excitation states of
energy; on one hand, he considers the shift of the array from one layer to
another as a gauge transformation on the integer �eld variables de�ning
the layer; on the other hand, he takes the elastic distortions that may be
treated by associated continuous �elds that are in fact gauge �elds too. The
former �elds he called �defect gauge �elds�, while the latter �stress gauge
�elds� [18]. Obviously the theory itself is quite complex, since the increase
in perturbation leads to non-linear terms of the energy expansion become
important.
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1.2 The classical caloric �eld gauge approach in practice X
To escape a little from the conventional presentations in which
monotonously it is repeated the same old examples of classical �eld the-
ory with not much originality, I shall present a new and realistic context.
The case study I shall discuss refers to a feasible project using solar energy
in large scales proposed in my doctoral thesis. As we know, solar concen-
trators have become a reality in the day-to-day response to sanitary and
environmental preservation needs [16]. I propose a waste recycling plant as
a result of years of research, unifying fundamental issues from �eld the-
ory and thermodynamics in a comprehensive approach of thermal systems
engineering, which is, according to Moran and colleagues, a branch of en-
gineering concerned with how energy is utilized to get bene�ts in industry,
transportation, the daily dealings of home, and so on [25].

Thermodynamics is a beautiful macroscopic theory, built on a few fun-
damental presuppositions (which makes it more attractive and nice). It
describes the e�ects of macroscopic systems formed by a large number of
microscopic entities (spins, molecules, particles, etc.) that obey the basic
laws of classical mechanics or quantum mechanics, as the case may be.
Analyzing the generality of thermodynamics and its late claim as a solidly
established physical science, we can speculate that the prevalence of mecha-
nistic models occurred only by a matter of secular precedence of mechanics
and its huge success to explain the world of the immediate things. The com-
pleteness of thermodynamics is mainly marked by its evolutionary approach
of the physical systems, pointing the entropy as a fundamental variable �
de�ned in a manner somewhat abstract from a variational principle � in
the process of evolution. Going from the statement that heat is energy in
transit and assuming the thermodynamic equilibrium of the system as the
macroscopic state for which the entropy is a maximum, it is possible to
realize any physical phenomenon, insofar as the dynamics of the universe
is in the end summarized by dissipation and energy exchange processes.
Thus, it is also possible to historically understand the almost total lack
of application of classical �eld theories in the context of thermodynamics
, except perhaps indirectly in some speci�c situations where the thermal
state of the system appears secondarily in the general analytical framework
applied.

My case study shows a consistent application of the classical �eld theory
in thermodynamics, focusing on the subject of recycling condensed matter,
speci�cally in order to establish a system of solid waste treatment. Brie�y,
any waste �lls a prototype system (Figure 2) of two cylindrical graphite
chambers in which pyrolysis and recycling processes shall take place. In-
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ternally subjected to a vacuum, �rst chamber (pyrolysis chamber) receives
the concentrated sunlight rays from a concave array of mirrors on a quartz
window placed at one of the circular bases of the chamber. At high temper-
atures atomic disruptions produce gases and liquids that �ow to the recy-
cling device, inside which the gradient of temperatures T1, T2, T3, T4, ..., Tn
allows to a recovery of products P1, P2, P3, P4, ..., Pn from the hottest layers
to the cooler. A computational control system conducts catalytic agents,
whose actions enter the processes associated with temperatures to ensure
the outputs of programmed materials, and the recombination of remnant
atoms into inert substances in the form of usable waste. To reduce the en-
tropy and expand the productivity of the heat generation we introduced
an auxiliary piping system for the laminar �ow of a nano�uid to establish
a convection process of heat transfer [9,44]. Lastly, products, �nal residues
and usable waste are sent respectively to inventory and appropriate con-
tainment, remembering that the so called �pyrolysis ashes� � similar to the
dust and blast furnace sludge � which constitute the usable waste can be
used in the cement industry. All the energy needed to run the engine is
solar, being the possible surplus routed to the public network.

The theoretical model developed treats the thermal energy inside the
pyrolysis and recycling chambers as a complex scalar �eld, the so-called
�caloric �eld� to be measured with precision and controlled at each point
of its con�nement for a maximum of e�ciency in management of byprod-
ucts and pyrolysis process. Theoretical basis for the construction of classical
�elds may be found in the works of Maggiore [23] and Radovanovi¢ [31]. In
addition, the theory and its application to the power plant forms the econo-
physical foundations to match operations management and environmental
management in a uni�ed operational level just in the sense pointed out by
Kurdve et al. [21] to include the waste management supply chain.

Accordingly classical �eld theory [23], present model supposes a di�er-
ential polynomial in ξ, the Lagrangian density L(ξ), given by

L = (∂qξ)
∗

(∂qξ)− |ξ|2 + 2γ2|ξ|2 ln |ξ|, (1)

whose action over a certain regionM in space and time is

S (ξ) =

∫
M

[
(∂qξ)

∗
(∂qξ)− |ξ|2 + 2γ2|ξ|2 ln |ξ|

]
dVdt. (2)

Here, from my �rst proposal, ξ represents a scalar complex massless caloric
�eld , dV an in�nitesimal volume of space, dt an in�nitesimal time inter-
val, and γ a real scalar to be de�ned later which depends on the system's
environment in question [44]. The caloric �eld obeys the �eld equation

∂q∂
qξ +

(
1− γ2

)
ξ − 2γ2ξ ln |ξ| = 0, (3)
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Fig. 2: The complete scheme of the proposed thermodynamic engine. Note the cicle of
energy with a thermoelectric station feeding continually the usine as well as it is
powered by solar energy (from Serpa's Ph.D. thesis in French [44]).

being the �eld entropy in generalized coordinates q given by

S =

∫
−2γ2|ξ|2 ln |ξ|dq. (4)

Thus, �eld equation includes an entropy term −2γ2ξ ln |ξ| in the dynamics
of the �eld and expression (4) is just a straightforward generalization of

Gibbs entropy . It is worth noting that for |ξ|2 < 1 it follows that 2 ln |ξ| < 0;
thus, S > 0 for every non-trivial system state. The factor

(
1− γ2

)
in the

second term of equation (3), the so-called �luminothermic capacity�, re�ects
the potential power o�ered by the natural surroundings. Its action under
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the �eld shows how �eld is in�uenced by the external conditions. Thus,
caloric �eld equation governs the evolution of the thermal energy �eld and
the corresponding entropy produced.

In a strictly thermodynamic theory, the �elds are representations of
the energy as heat, while the entropy function is a �potential�. Therefore,
we mainly deal with heat exchanges which can lead to macroscopic states
where interactions between the original �eld and matter modify the former
by the emergence of a gauge �eld, and thus the establishment of a �massive�
factor.

The usual way to present gauge theory begins with the introduction
of a global continuous symmetry to the action, say an overall phase. The
action does not change if we proceed the transformation ξ′ → eiQθξ. The
symmetry group of this transformation is the Lie group U(1). On behalf
of discourse economy, now we begin by the introduction of a local phase
changing, say

ξ′ = eiQθ(q)ξ

and its conjugate
ξ†
′

= e−iQθ(q)ξ†.

We rewrite our former Lagrangian

L0 = ∂qξ
†∂qξ − |ξ|2 + γ2 |ξ|2 ln |ξ|2 .

A local transformation based on common partial di�erentiation gives

L′0 = ∂q

(
e−iQθ(q)ξ†

)
∂q
(
eiQθ(q)ξ

)
− |ξ|2 + γ2 |ξ|2 ln |ξ|2 ; (5)

L′0 =
[
−iQe−iQθ(q)∂qθ(q)ξ† + e−iQθ(q)∂qξ

†
] [
iQeiQθ(q)∂qθ(q)ξ + eiQθ(q)∂qξ

]
−

− |ξ|2 + γ2 |ξ|2 ln |ξ|2 ;

L′0 = Q2∂qθ(q)∂
qθ(q)ξ�ξ − iQ∂qθ(q)ξ�∂qξ + iQ∂qθ(q)∂qξ

�ξ + ∂qξ
†∂qξ−

− |ξ|2 + γ2 |ξ|2 ln |ξ|2 . (6)

This operation, as we can see in box, breaks Lagrangian invariance adding
the �rst three terms resulting from the transformation. Consequently, we
need another operator, namely the covariant derivative

D = ∂q − iQAq (ou D = ∂q + iQAq),

with the introduction of the gauge �eld Aq so that we can feature a unitary
transformation as

L0
U(1)−→ L′0 = (∂q + iQAq) e

−iQθ(q)ξ† (∂q − iQAq) eiQθ(q)ξ−e−iQθ(q)ξ†eiQθ(q)ξ+
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+γ2e−iQθ(q)ξ†eiQθ(q)ξ ln
(
e−iQθ(q)ξ†eiQθ(q)ξ

)
1. (7)

The phases are canceled, leaving the short expression

L0
U(1)−→ L′0 =(

−iQ∂qθξ† + ∂qξ
† + iQAqξ

†) (iQ∂qθξ + ∂qξ − iQAqξ)−ξ†ξ+γ2ξ†ξ ln
(
ξ†ξ
)
.

(8)
Making up multiplications term-to-term we obtain

L0
U(1)−→ L′0 =

Q2∂qθ∂
qθξ�ξ − iQ∂qθξ�∂qξ −Q2Aq∂qθξ

†ξ+

+iQ∂qθ∂qξ
�ξ + ∂qξ

†∂qξ − iQAq∂qξ†ξ−

−Q2Aq∂
qθξ†ξ + iQAqξ

†∂qξ +Q2AqA
qξ†ξ − ξ†ξ + γ2ξ†ξ ln

(
ξ†ξ
)
, (9)

where I kept boxed terms that shall be canceled. However, based on the
above development, this cancellation comes from the potential introduction
in the expression

LGauge = −Q2Aq∂qθξ
†ξ−iQAq∂qξ†ξ−Q2Aq∂

qθξ†ξ+iQAqξ
†∂qξ+Q2AqA

qξ†ξ,
(10)

which we called �gauge Lagrangian�. Then, we have

A′q = Aq + ∂qθ,

from which

L′Gauge = −Q2 (Aq + ∂qθ) ∂qθξ
†ξ−iQ (Aq + ∂qθ) ∂qξ

†ξ−Q2 (Aq + ∂qθ) ∂
qθξ†ξ+

+iQ (Aq + ∂qθ) ξ
†∂qξ +Q2 (Aq + ∂qθ) (Aq + ∂qθ) ξ†ξ. (11)

The reader must note that the gauge �eld Aq does not transform by covari-
ant mode. The way it transforms come from the requirement

(Dqξ)′ =
(
∂q − iQA′q

)
ξ′;

(Dqξ)′ =
(
∂q − iQA′q

)
eiQθ(q)ξ;

(Dqξ)′ = eiQθ(q)
(
∂qξ + iQ∂qθ(q)ξ − iQA′qξ

)
;

(Dqξ)′ = eiQθ(q) [∂q + iQ∂qθ(q)− iQ (Aq + ∂qθ(q))] ξ;

1 Here I wrote the complete terms with the phases so that the reader realizes that
they cancel each other.



On Gauge Theories and Quantum Gravity 13

(Dqξ)′ = eiQθ(q) [∂q + iQ∂qθ(q)− iQAq − iQ∂qθ(q)] ξ;

(Dqξ)′ = eiQθ(q) (∂q − iQAq) ξ.

Usually it is assumed that Aq describes some new and independent degrees
of freedom of the system. By applying the change, it follows that

L′Gauge =
[[
−Q2Aq∂qθξ

�ξ −Q2∂qθ∂qθξ
�ξ
]]
− iQAq∂qξ†ξ −iQ∂qθ∂qξ�ξ +

[[
−Q2Aq∂

qθξ�ξ
]]
−Q2∂qθ∂

qθξ�ξ + iQAqξ
†∂qξ +iQ∂qθξ

�∂qξ +

+Q2AqA
qξ†ξ

[[
+Q2Aq∂

qθξ�ξ +Q2∂qθA
qξ�ξ +Q2∂qθ∂

qθξ�ξ
]]
. (12)

Since the theory is Abelian, the order of the factors in the multiplication
does not matter. Terms in double brackets are canceled naturally, while
boxed terms cancel the terms of symmetry breaking of the former La-
grangian. So,

L′0 + L′Gauge = ∂qξ
†∂qξ − |ξ|2 + γ2 |ξ|2 ln |ξ|2 +

+Q2AqA
qξ†ξ + iQ

(
Aqξ

†∂qξ −Aq∂qξ†ξ
)
, (13)

or

L′0 + L′Gauge = ∂qξ
†∂qξ − |ξ|2 + γ2 |ξ|2 ln |ξ|2 +

+Q2AqA
qξ†ξ + iQ {Aq∂q, Aq∂q}ξ†,ξ . (14)

Additional terms that express the interactions between �elds carry the gen-
erator of the symmetry group of the theory. Since the �eld Aq is added to
our Lagrangian as a tool to assert gauge invariance of the caloric �eld ki-
netic term, we must recognize the need to add a kinetic term for the gauge
�eld itself. Thereby, we introduce a �eld strength tensor, built from the
commutator of covariant derivatives

[Dp, Dq] = [(∂q − iQAq) (∂p − iQAp)]− [(∂p − iQAp) (∂q − iQAq)] ;

[Dp, Dq] =
[
∂q∂p − iQ∂qAp − iQAq∂p −Q2AqAp

]
−

−
[
∂p∂q − iQ∂pAq − iQAp∂q −Q2ApAq

]
;

[Dp, Dq] = [−iQ∂qAp − iQAq∂p]− [−iQ∂pAq − iQAp∂q] ;

[Dp, Dq] = iQ (∂pAq − ∂qAp) = iQFpq.

The new kinetic term must also preserve Lorentz invariance, so that it
assumes the form

F = FpqFpq. (15)
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Thus we have a new code for the Lagrangian with embedded transformation
of the gauge �eld, which is

L′0 = Dqξ†Dqξ − |ξ|2 + γ2 |ξ|2 ln |ξ|2 − F. (16)

Given that the kinetic terms of the classical �elds involved do not originate For me, a

gauge theory

is any

physical

theory of a

dynamic

variable

which, at the

classical

level, may be

identi�ed

with a

connection

on a

principal

bundle

(Trautman,
1980).

from a mechanical model, there is in principle no reason to assume fractional
constants in these terms. Now, the question to ask is: what is the need
for a gauge approach to this classic situation in a so familiar terrain like
thermodynamics? The answer depends on a correct physical intuition, as
on the almost inexhaustible capacity for representation of the physical-
mathematical formalism. We have already shown that an unconventional
approach to thermal energy is possible. If the massless caloric �eld, as
presented above, was simply generated in a vacuum, nothing new would
take place. However, when interacting with the mass of waste, the �eld
generates mass for itself, since the thermo-physical and chemical reactions
triggered generate heat providing thermal feedback to the former caloric
�eld, plus a small amount of volatile mass assimilated by the �eld. This
mass is then represented by the constant of minimum coupling with the
gauge �eld, called �Q� (the symmetry group generator), something like a
�caloric charge� or better yet �minimal thermal mass factor of dynamic
interaction�. We note that this corresponding generator does not respect
the former vacuum of the chamber.

Thereby, the introduction of the gauge �eld discovers a new physics, free
from derivatives on this �eld, namely, the interactions that are triggered by
the action of the �eld on the waste which could not exist before introducing
the material into the pyrolysis chamber. Indeed, gauge �eld Aq mediates a
�strain�2 between the �elds (and their derivatives) with coupling Q. The
symmetry varies point to point, since the processes are subject to a gra-
dient of temperatures and a random volatilization of matter (the phase of
the �eldfunction can be chosen arbitrarily at each spacetime point). This
information should be part of the stochastic processing algorithm to be
initialized in �Operations� (Figure 2) in order to accurately calculate the
amount of non recycled material, and the mass percentage assimilated into
the �eld. Lastly, with the recycling of all materials from pyrolysis , the re-
maining pyrolytic ashes feature a completely inert environment within the
chambers. In this situation, the Lagrangian density interactions sector must
be annulled.

2 We can say that a local symmetry generates a �strain� coupled to the �caloric
charge�. In other words, inside the chamber, if we gauge caloric energy and the minimal
thermal mass of dynamic interaction, we shall get forces (internal pressures that can
be attributed to the shock of the pyrolytic plasma molecules against the walls of the
chamber, thereby being transmitted impulse to the walls) for which the sources are the
energy and momentum of the molecules.
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Exercise 1.21 Prove that for a classical complex scalar �eld ξ, locally de-
�ned by a positional parameter θ(q), we may write

{Aq∂q, Aq∂q}ξ†,ξ ∝ 2iAq∂qθ(q).

Exercise 1.22 Consider the calorie �eld

ξ = einγq−ϑ ∴ (17)

∂qξ = inγeinγq−ϑ, (18)

and its conjugate

ξ† = e−inγq−ϑ ∴ (19)

∂qξ
† = −inγe−inγq−ϑ, (20)

where n is the polytropic index, γ is the opacity of the medium and ϑ is the
refractive index of the focal quartz window [44]. Show, in one dimension,
that in the natural gauge (Aµ = Aµ = 1) the minimal thermal mass factor
of dynamic interaction is equal to 2nγ in the inert state of the pyrolysis
chamber.

1.3 The Dirac Lagrangian

The discussion made in the previous section intended to show the most
relevant points to be considered when implementing a gauge symmetry,
namely the correct perception of the scope of the theory and its suitability
to the problem addressed. In the practical case studied, we had as focus
the need for a precise knowledge of thermodynamic processes aiming the
maximal reduction of the entropy produced in a thermodynamic engineering
system to recycling condensed matter. In addition, the program presented
in short showed how the gauge theories may be close to our increasingly
urgent operational needs.

Similarly to the classical case, we can consider implementing a gauge
symmetry from a Lagrangian spinorial structure. The simplest example
refers to a unitary transformation of type UU† = U†U = 1 on spinors,
given the Dirac Lagrangian density. For a free particle of mass m we have
after Dirac the expression

L0 = ψ̄ (iγµ∂µ −m)ψ, (21)

where ψ is the Dirac spinor (wave function), ψ̄ is the adjunct spinor, and
γµ is a set of 4X4 matrixes that de�nes a Cli�ord algebra. Again, a local
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transformation based on common partial di�erentiation breaks Lagrangian
according to

L0
U(1)−→ L′0 = ψ̄′ (iγµ∂µ −m)ψ′ (22)

= e−iQθψ̄ (iγµ∂µ −m) eiQθψ

= e−iQθψ̄
[
iγµ∂µ

(
eiQθψ

)
−meiQθψ

]
= e−iQθψ̄

{
iγµ

[
eiQθ∂µψ + iQeiQθ∂µθψ

]
−meiQθψ

}
= ψ̄ (iγµ∂µ − γµQ∂µθ −m)ψ. (23)

Similarly, through the minimal coupling, we introduce the covariant deriva-
tive

Dµ ≡ ∂µ + iQAµ (24)

in such a way that we preserve Lagrangian properties under the local gauge
transformation

Aµ
U(1)−→ A′µ = Aµ − ∂µθ. (25)

The Abelian intensity tensor is thus de�ned as

Fµν ≡ ∂µAν − ∂νAµ, (26)

which remains invariant under the given gauge transformation (for more
details, please, see reference [41].

Exercise 1.31 Write the �nal expression of the Lagrangian density after
the introduction of the covariant derivative and the respective gauge
transformation for a complete description of quantum electrodynamics.

Hint: consider Qψ̄γµψ as the electromagnetic 4-current.

1.4 The Yang-Mills gauge theory

Presently, it is recognized that the most important quantum �eld theories
for describing elementary interactions are gauge theories. It can be said
that the most advanced models in this context evolved from the �rst works
of Yang and Mills. The Yang-Mills gauge approach begins at 1952-1954
[57] when they suggested a �eld similar to the electromagnetic �eld. As
Yang-Mills equations provided the classical description of massless waves
that travel at the speed of light, it appeared natural at that moment to try
the same approach to describe other forces, mainly the strong interaction
binding protons and neutrons into nuclei. However, the massless nature of
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classical Yang-Mills waves brought serious drawbacks to applying Yang-
Mills theory to other forces, since weak and nuclear interactions are short-
range forces and many of the associated particles are massive.

As we know, the initial approach of Yang and Mills consists in a non-
abelian gauge �eld theory based on SU(2) symmetry 3. Protons and neu-
trons come to be considered nearly identical (if one just concentrates on
the nuclear forces ignoring charge), except by the isotopic spin (�up� for
protons and �down� for neutrons). Since this isotopic spin is a local vari-
able, it can be di�erent for each spacetime point (the isotopic gauge); for
instance, the proton up state at one point is not in general the same at any
other point. Thereby, just as the electromagnetic potential connects the
phase of wavefunctions at di�erent points, there must be an isotopic spin
potential connecting states of isotopic spin at di�erent points by rotation
of the isotopic spin direction. So, the isotopic spin transforms as

ψ′ = S(x, t)−1ψ, (27)

where S(x, t) is the isotopic spin rotation at a given spacetime point, and
ψ is column vetor, the doublet �eld

ψ =

(
ψp
ψn

)
Continuing the analogy with electromagnetism, to cancel o� the very known
extra terms generated by taking the gradient of the potential, it was intro-
duced the covariant derivative written as

D = ∇− iεA(x, t), (28)

where ε is the coupling constant. The potential obeys

A′ = S−1AS +

(
i

ε

)
S−1∇S. (29)

The nonabelian �eld strength is given by

Fµν ≡ ∂µAν − ∂νAµ − iε [Aµ, Aν ] , (30)

3 However, the initial expectations were not con�rmed, since local SU(2) transforma-
tions play no role in strong interactions. Now we understand these forces as governed
by an SU(3) gauge theory called quantum chromodynamics (the term was introduced
after the word �colour� to be used for the degrees of freedom transforming under SU(3).
Lastly, it is important to remark that theories based on SU(2) gauge transformations
hold relevance for the weak sector.



18 Nilo Silvio Costa Serpa

which reduces to the form (26) when the gauge �elds commutator van-
ishes. The nonabelian gauge �eld Aµ matches the complete gauge invariant
Lagrangian density

L = −1

2
Tr (FµνF

µν) + ψ̄γµ (i∂µ −Q∂µθ)−mψ̄ψ, (31)

which is the sum of a kinetic part with the Dirac Lagrangian for a fermion
doublet given by expression (23).

Even though some prospects of the Yang-Mills theory remain out of
reach for now, there are studies on the application of SU(2) Yang-Mills
�elds in cosmology, considering the second and the fourth order terms of the
Yang-Mills �eld strength tensor respectively playing the roles of radiation
and cosmological constant [10].

1.5 Super�elds and gauge theory

The implementation of super�elds aims to facilitate in a remarkable man-
ner the calculations in supersymmetric �eld theories, from the moment
that supersymmetry is identi�ed and established. Everything starts from
the fact that in ordinary spacetime supersymmetry is not manifest, be-
ing the customary Lagrangian formulation not the most appropriate to
model supersymmetric �eld theories. Therefore, we must consider a su-
perspace, that is, a Minkowski spacetime increased by fermionic 2 + 2
anti-commuting Grassman coordinates θα, θ̄α̇ (associated to de supersym-
metry generators Qα, Q̄α̇), forming a new superspace with eight coordi-
nates tagged by

(
xµ, θα, θ̄α̇

)
, where the xµ are the bosonic coordinates with

Lorenz vector indice, θα are the Grassmanian complex coordinates with
left-handed spinor indice and θ̄α̇ their conjugates with right-handed spinor
indice. Consequently, super�elds are nothing but �elds in this superspace,
or, which come to be the same, functions of the superspace coordinates
which are subject to the translations that characterize supersymmetry, say

xµ → xµ − iϑ̄σ̄µθ − iϑσµθ̄;

θα → θα + ϑα;

θ̄α̇ → θ̄α̇ + ϑ̄α̇. (32)

where ϑα, ϑ̄α̇ are Grassmann spinor parameters. In such a context, nothing
could be more natural than talking about a supergauge. Supercovariant
derivatives that map super�elds to super�elds are de�ned as

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇ ∂

∂xµ
; (33)
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D̄α̇ =
∂

∂θ̄α̇
+ iσ̄µα̇αθα

∂

∂xµ
. (34)

Concluding this brief summary, super�elds, while superspace functions, can
be understood in terms of expansions in power series in θα and θ̄α̇

F
(
xµ, θα, θ̄α̇

)
= f(xµ) + θαφ (xµ) + θ̄α̇ϕ̄ (xµ) + θαθαm (xµ) +

+θ̄α̇θ̄α̇n (xµ)+σµθ̄α̇vµ (xµ)+θαθαθ̄α̇λ̄ (xµ)+θ̄α̇θ̄α̇θαψ (xµ)+θαθαθ̄α̇θ̄α̇d (xµ) ,
(35)

with component �elds (f(xµ), φ (xµ) , ϕ̄ (xµ) ,m (xµ) ...), and having all Super-

symmetry is

a beautiful

symmetry

between

bosons and

fermions,

although

there is no

evidence of it

in Nature.

This does

not mean

that it is not

present, but

that it must

be well

hidden

(Fayet,
1980).

higher powers of θα, θ̄α̇ vanished.

Exercise 1.51 Prove that the covariant derivatives Dα and D̄α̇ anticom-
mute between themselves.



20 Nilo Silvio Costa Serpa

II PART: GRAVITY

Any cosmological theory is supported by the gravitation theory. Gravity
is the only relevant force in the scale of galaxy clusters and beyond. The
gravitation theory can be constructed in di�erent ways and this is still a
source of puzzles for thoughtful men, mainly in discussions about quanti-
zation of gravity and uni�cation of all forces. In fact, there are three main
approaches to relativistic gravity theories:

� gravity is a property of spacetime itself, the geometry of curved space-
time;

� gravity is a kind of matter within the spacetime (the relativistic �eld
theory in �at spacetime);

� gravity is the e�ect of the direct interaction between ponderable parti-
cles.

No matter the choice, it is important to look upon that up to now relativistic
gravity has been tested experimentally only in weak �eld approximation.
The notes that follow document my studies on gravity under di�erent points
of view, which the conciliation, if any, is in the future.

2.1 Paleogravity: from a bit of subversive physics X
Supersymmetry (SUSY) is a Bose-Fermi symmetry referring to the spec-
trum of coupling energy among particles; it is a device that tries to ful�ll
a phenomenological gap between the sectors of spectrum related to elec-
troweak interactions and GUT scale (from 102 Gev to 1016 Gev). The gap
results from the second Higgs quantization, required in Weinberg-Salam,
forcing the introduction of SUSY mechanisms to provide intermediary
physics inside those limits. Successive symmetry breaks are in part sup-
plied by gravitic �elds that do not couple (at least in thesis) with matter.
Supergravity (SUGRA) is the supersymmetry that occurs in gravity. The
smallest theory of supergravity relates two types of �elds referring to the
hypothetical particles graviton and gravitino. The relevance of supergravity
to cosmology is that it o�ers an e�ective �eld theory behind the expanding
universe and timedependent scalar �elds.

Supersymmetry describes fermions and bosons in a uni�ed way as part-
ners of supermultiplets. Such multiplets necessarily have a decomposition
in terms of boson and fermion states of di�erent spins. So, the supergrav-
ity multiplet consists of the graviton and its superpartner, the gravitino
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(in fact, the gravitino multiplet contains (1; 3/2) and (−3/2;−1), that is
a gravitino and a gauge boson; on the other hand, the graviton multiplet
includes (3/2; 2) and (−2;−3/2), corresponding to the graviton and the
gravitino). Really the spin 2 graviton derives from the rank 2 of the metric
tensor gµν which describes the gravitational �eld. At �rst look, gravitino
could have spin 5/2 as often as 3/2, but the advantage to choose spin 3/2
is the absence of the goldstino in supersymmetry breaking theories.

In the model that shall follow, the reader should understand that the
terms �graviton� and �gravitino� specify merely the symmetries of the the-
ory and should not be seen as elementary particles in the strict sense. My
approach on supergravity consists in a classical framework in the sense that
the �elds involved do not have, in principle, probabilistic character. As well
pointed Rovelli [38], the spatial and temporal features of the gravitational
�eld come to be lost from the moment in which one assumes a granular
structure of gravity and so the quantized dynamics of the �eld with its
probabilistic nature. Such a loss would certainly jeopardize any alternative
approach wishing to make use of the classical conception of spacetime, even
in the particular case of further quantization of the spacetime itself [46].
This approach is associated with the concept of G-closure4, a type of space-
time bubble whose the internal side would be described by an adS spacetime
(O(3, 2) symmetry) dominated by gravitinos embedded into an external dS
spacetime dominated by gravitons. The supersymmetric exchange of mass
related to the pair graviton/gravitino takes place at the junction between
the two spacetimes.

The main restriction on the inclusion of the fourth interaction in the
uni�cation process is the fact that the e�ects of gravity result from a long
cumulative process on a large scale. This means that past seems to play
an important role in gravity. Still, it is well known that several physical
systems can be modeled using di�erentiable manifolds. In Lagrangian me-
chanics, for instance, the dynamic equations of a system turn out to be the
Euler-Lagrange equations for a de�ned functional on a given manifold. This
formulation is often supported by Riemannian manifolds, and we can see
the so familiar principles of conservation as manifestations of invariance of
the Lagrangian density in face of a group of smooth transformations, the
di�eomorphisms of the manifold. For a nonlocal theory, to which in princi-
ple it would not be appropriate to ensure the invariance of the Lagrangian
by introducing a covariant derivative, it would be interesting to get a set of
di�eomorphisms that could be deducted from the own system's dynamics,

4 The G-closure shall be seen below and was detailed in reference [46], but it can
be understood here as a bubble of inhomogeneity immersed in a FLRW homogeneous
spacetime.
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thus de�ning a process of acquisition of mass over time consistent with the
establishment of gravitational phenomena at large scale.

So, let us consider a phenomenological Lagrangian density exhibiting
a time-integral and something like a �border gauge� �eld mass-coupled to
gravitino5, such as

L = M2|g〉〈
^

G〉∂τ 〈
^

G〉
∫
|g〉dτ + 1/3M2〈

^

G〉3 + i
^
r∂τ

^
r , (36)

where the kets mean that �elds are represented with the aid of a math
structure called �gravitor�6. Gravitors are dual �column-objects� gener-
ated from the group S(γη) given by the 2× 2 matrices γη(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
,

(
0 −1
−1 0

)
;(

0 i
−i 0

)
,

(
−1 0
0 1

)
,

(
i 0
0 i

)
,

(
−i 0
0 −i

)
;(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 i
i 0

)
,

(
0 −i
−i 0

)
;(

0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
i 0
0 −i

)
,

(
−i 0
0 i

)
.

The above referred dual column-objects form the group
⋃

of the gravitors
with elements (±12, γη) and (±ıi2, γη). From

⋃
we are interested in the

subgroup
⋃

(ıi2) of the gravitors that can represent Wick-rotations from

one another under the adS Cli�ord subalgebra C(γµ)
3,2 , so that we have in

gravitorial theory a duality symmetry(
ıi2
γµ

)
→
(
γ−11 γ

−
12

γ−21 γ
−
22

)(
ıi2
γµ

)
(37)

for gravitinos, where γ−ab is the inverse matrix of γab, or,(
12

γν

)
→
(
γ11 γ12
γ21 γ22

)(
12

γν

)
(38)

5 As the question is to describe the in�uence of the past on a local observation, it would
seem contradictory to establish a covariant derivative. So I set out from an integration
imposed on the Lagrangian, reversing the approach and making that a transformation
rule could arise from the Lagrange equation itself. Although the disregard of inheritance
factors is in part consequence of an exaggeration of simpli�cation, non-locality phobia in
quantum �eld theory is very related with the fear to lose Lorentz and gauge invariance,
both well preserved with local variables.
6 In fact, there is another Lagrangian for the interaction between gravitons and grav-

itinos, but I will limit myself to just discuss the border gauge, suggesting to the reader
the reference for more details.
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for gravitons. Examples of resulting components for gravitons and graviti-
nos, accordingly this representation, are respectively:

Gµ =

[(
12

σ1

)
,

(
12

iσ2

)
,

(
12

iσ3

)
,

(
12

ıi2

)]
, (39)

gµ =

[(
ıi2
iσ1

)
,

(
ıi2
−σ2

)
,

(
ıi2
−σ3

)
,

(
ıi2
−12

)]
, (40)

where

12 =

(
1 0
0 1

)
, (41)

and

ıi2 =

(
i 0
0 i

)
, (42)

with the customary Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (43)

Those gravitors were related by the action of the subalgebra C(γµ)
3,2 according

to  0

∣∣∣∣ 1 0
0 −1

∣∣∣∣∣∣∣∣−1 0
0 1

∣∣∣∣ 0

( 12

iσ3

)
=

(
ıi2
−σ3

)
;

 0

∣∣∣∣ 0 −ii 0

∣∣∣∣∣∣∣∣ 0 i
−i 0

∣∣∣∣ 0

( 12

iσ2

)
=

(
ıi2
−σ2

)
;


∣∣∣∣ i 0
0 i

∣∣∣∣ 0

0

∣∣∣∣ i 0
0 i

∣∣∣∣
(12

ıi2

)
=

(
ıi2
−12

)
;

 0

∣∣∣∣ 0 ii 0

∣∣∣∣∣∣∣∣ 0 ii 0

∣∣∣∣ 0

( 12

σ1

)
=

(
ıi2
iσ1

)
.
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A peculiar thing about gravitors is that they are multiplied by each other
via direct product of their two matrix components, while the action of
Cli�ord algebra is a normal matrix product. So,(

ıi2
σ3

)2

=

(
ıi2
σ3

)
~

(
ıi2
σ3

)
=

(
ıi2 × ıi2
σ3 × σ3

)
.

Now, a Lagrangian model that includes a time integral on the gravitino �eld
as described above, I call �paleogravity�. I implemented this way because
it is expected that light gravitinos of mass . O(10)eV may contribute
appreciably to the total matter of the universe, a�ecting structure formation
since early epochs to the present days [29]. I suppose the states of graviton
are �mirrored� in states of gravitino, always in pairs, beneath adS Cli�ord
algebra7. The �elds 〈G| and |g〉, as coordinates of the whole system, are

related to gravitons and gravitinos respectively. The �eld 〈
^

G〉 is the gravitor
inscription of the mass retained at the adS zone with M2 appearing due

to 〈
^

G〉 and its coupling to other �elds. The �eld
^
r is an auxiliary non-

coupled �eld de�ned at the junction between the two spacetimes. Time
integrals applied denote strong interference of system's history on local �eld
inhomogeneities. From Euler equation applied to this Lagrangian density,
we get

d

dτ

{
M2|g〉〈

^

G〉
∫
|g〉dτ

}
−M2|g〉∂τ 〈

^

G〉
∫
|g〉dτ −M2〈

^

G〉2 = 0; (44)

〈
^

G〉 = |g〉2 + ∂τ |g〉
∫
|g〉dτ. (45)

In my theory, the �eld 〈
^

G〉 is in fact a transformation of the gravitino �eld
according to non-local contributions. Therefore, one can use expression (45)
to impose an integro-di�erential constraint on any �eld or set of �elds in
order to preserve Lagrangian symmetry. For the sake of brevity, we may

put 〈
^

G〉 = A′ and |g〉 = A without loss of generality, so that, for a given
manifold S, we have a di�eomorphism D written as

D(S) : A → D(S)(A) = A2 + ∂τA

∫
Adτ. (46)

7 The generators of supersymmetry are elements of the adS Cli�ord Algebra C3,2 and,
at the same time, elements of the orthogonal group O(3, 2) that represent Wick-rotations
when acting on gravitors. The reasons by which I applied an adS Cli�ord algebra for
supergravity with gravitorial a�nors is that 1) Cli�ord algebras usually furnishes spino-
rial representations of rotation groups and 2) supergravity does not exist without anti-de
Sitter space [30].
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It is interesting to make

A′ = A2 + ∂τA

∫
Adτ = A2 − 1

α2
(∂µA)2 = (47)

= (A− 1

α
∂µA).(A +

1

α
∂µA), (48)

where α is a constant. In fact, this transformation maps an object into
another whose locality is arrested from far away in time. Since we are
dealing with a di�eomorphism D : A→ D(A), as the map D is invertible, we
expect to �nd a function A that preserves the invariance of the Lagrangian.
From the above imposition, we get a simple integro-di�erential equation

− 1

α2
(∂µA)2 = ∂τA

∫
Adτ. (49)

The left-hand side is the spacelike (local) remainder of �eld evolution, while
the right-hand side is the instantaneous �eld status under in�uence of the
�eld history (non-local)8. Taking one spatial dimension solely, a solution is

A = Aei(αµ+βτ)
(
ıi2
σ3

)
, (50)

where the column object is one gravitorial representation of the gravitino
in adS Cli�ord algebra. This solution is nothing more than the �shadow�
gravitational wave associated to gravitino's polarization. Returning to my
�rst Lagrangian, if we assume (45) as a universal supersymmetric trans-
formation for gravity, any �eld A shall behave in this way. Them, after the
appropriate substitutions,

L = M2AA′∂τA′
∫

Adτ + 1/3M2A′3 + i
^
r∂τ

^
r =

= M2A(A− 1/α∂µA).(A + 1/α∂µA)∂τ [(A− 1/α∂µA).(A + 1/α∂µA)] .

.

∫
Adτ+1/3M2 [(A− 1/α∂µA).(A + 1/α∂µA)]

3
+ i

^
r∂τ

^
r . (51)

Calculations lead to con�rm Lagrangian invariance

L =
7

3
M2A6e6i(αµ+βτ)

(
ıi2
σ3

)6

+ i
^
r∂τ

^
r , (52)

8 This equality aims to ensure that the local inhomogeneity in space has roots in the
remote past.
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L′ =
32

3
M2A6e6i(αµ+βτ)

(
ıi2
σ3

)6

+ i
^
r∂τ

^
r . (53)

This shows that, at �rst, the presence of non-local terms do not a�ects
Lagrangian symmetry properties. As the amplitude A has in general no
dimension, de �rst term is rigorously a mass term and the mass term dif-
ference observed between L and L′ is said a di�eomorphic mass di�erence.
The column term (

ıi2
σ3

)6

is such that (
ıi2
σ3

)6

=

(
ıi2
σ3

)2

=

(
−12

12

)
. (54)

In addition, to understand the role of �eld
^
r , never is overmuch to

remind the content of Noether's theorem. For a system with Lagrangian
density of type L = L(Φ; Φ̇,∇Φ), a continuous symmetry of L generates
an equation of continuity ∂

∂τ ρ + ∇.j = 0, where ρ and j are functionals

of Φ, Φ̇,∇Φ, so that Q =
∫
d3xρ(Φ; Φ̇,∇Φ) is a constant of motion. As

pointed out by O'Raifeartaigh, �The Noether theorem gives the general
relationship between symmetries and conservation laws. [...] Thus to every
symmetry there corresponds a conserved quantity and conversely � [28]. So,
from Noether's theorem applied to Lagrangian (36), considering a trans-
formation that requires only a displacement in time, there is a conservation
expression on the Hamiltonian

d

dτ

 ∂L

∂∂τ 〈
^

G〉
∂τ 〈

^

G〉 − L

 = 0. (55)

Thereby, from ∂τ 〈
^

G〉 we get

d

dτ

{
−1/3M2〈

^

G〉3 − i^r∂τ
^
r

}
= 0. (56)

Let us imagine, for simplicity, that the current term is negligible (the ampli-
tude of the current is very small) with respect to the self-interaction mass
term. So,

i
^
r∂τ

^
r = −1

3
M2〈

^

G〉3. (57)

The �eld
^
r is called �junction �eld� or ��ltrino�, because it is de�ned at

the junction of spacetimes adS and dS, and because it seems to ��lter� the
mass of gravitino when it collides with the internal side of the junction.



On Gauge Theories and Quantum Gravity 27

Now, the reader must understand that kets 〈 〉 are applied at the junction
(symbolizing interaction both on and o� the edge), while kets | 〉 are refer-
ring to actions coming from the inside out the junction, and kets 〈 | related
to actions coming from outside inward the junction. Assuming expression

(50), �eld 〈
^

G〉 gains the form

〈
^

G〉 = A2ei2(αµ+βτ)
(
ıi2
σ3

)2

+Aiβei(αµ+βτ)
A

iβ
ei(αµ+βτ)

(
ıi2
σ3

)2

=

= 2A2ei2(αµ+βτ)
(
ıi2
σ3

)2

. (58)

Accordingly,

i
^
r∂τ

^
r = −1

3
M2〈

^

G〉3 = −1

3
M28A6ei6(αµ+βτ)

(
ıi2
σ3

)6

. (59)

The integration gives

^
r
2

= −16

3i
M2 A

6

6βi
ei6(αµ+βτ)

(
ıi2
σ3

)6

=
8

9

M2A6

β
ei6(αµ+βτ)

(
ıi2
σ3

)6

; (60)

^
r =

1

3

√
8

β
MA3ei3(αµ+βτ)

(
ıi2
σ3

)3

; (61)

^
r =

1

3

√
8

β
MA3ei3(αµ+βτ)

(
−ıi2
σ3

)
. (62)

We may note that

(
−ıi2
σ3

)
is in fact a Wick-rotation9 of a graviton gravi-

torial representation given by

−

 0

∣∣∣∣ 1 0
0 −1

∣∣∣∣∣∣∣∣−1 0
0 1

∣∣∣∣ 0

( 12

iσ3

)
=

(
−ıi2
σ3

)
, (63)

9 Wick-rotations were applied in my theory after Nieuwenhuizen and Waldron[27],
which have done the proposal of �a continuous Wick-rotation for Dirac, Majorana and
Weyl spinors from Minkowski spacetime to Euclidean space, which treats fermions on
the same footing as bosons�, emphasizing that the study focuses the Wick-rotation of
the �eld theory itself.
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where the matrix ϑ3 =

 0

∣∣∣∣ 1 0
0 −1

∣∣∣∣∣∣∣∣−1 0
0 1

∣∣∣∣ 0

 lives in adS Cli�ord algebra C3,2.

So,

^
r = −1

3

√
8

β
MA3ei3(αµ+βτ)ϑ3

(
12

iσ3

)
. (64)

In short, I conclude that the proposed paleogravity Lagrangian density
provides:

1. an interpretation of the mediator �eld 〈
^

G〉 as a quadratic transformation
of the �eld |g〉; if this rule of transformation is applied to any �eld of
the form (50), Lagrangian symmetry is preserved.

2. an auxiliary �eld
^
r to describe the mass-interchange mechanism at the

boundary of the G-closure, which is internally adS and dominated by
gravitinos.

As can be seen, paleogravity is not a quantum representation but a
meta-framework created on symmetries capable of producing a non-local
image of gravity, described by classical �elds easily linkable to general rela-
tivity. Perhaps gravity is never made a quantum theory in terms of elemen-
tary particles, being gravitons and gravitinos only names that symbolize
geometrodynamical symmetries . It was precisely this belief that led me to
build a quantum spacetime model as shall be seen below.

Exercise 2.11 Given the lagrangian,

L = M2|g〉〈
^

G〉∂τ 〈
^

G〉
∫
|g〉dτ + 1/3M2〈

^

G〉3 + i
^
r∂τ

^
r ,

and taking the coordinate-�eld
∫
|g〉dτ , �nd an expression for 〈

^

G〉, proving
that it is satis�ed for

〈
^

G〉 = A2ei2(αµ+βτ)
(
ıi2
σ3

)2

+Aiβei(αµ+βτ)
A

iβ
ei(αµ+βτ)

(
ıi2
σ3

)2

=

= 2A2ei2(αµ+βτ)
(
ıi2
σ3

)2

. (65)

Hint: apply Euler equation for
∫
|g〉dτ .
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2.2 Gravity as a gauge theory

In the context of GR, if we think about rigid motions in spacetime, we see
that these motions are in fact gauge transformations, as it can be con�rmed
by the parallel transport of a vector given from Christo�el connection, say

dvα = −vµΓαµσdvσ (66)

or

dvµ = vαΓ
α
µσdv

σ. (67)

From here, once that the scalar product of two vectors at the same point is

u.v = gµνu
µvν ∴ (68)

v.v = gµνv
µvν = |v|2 = (vν , v

ν) (squared length), (69)

it is simple to verify that the length of a vector is invariant under parallel
transport, that is,

d |v|2 = d (vν , v
ν)

= dvνv
ν + vνdv

ν

= vαΓ
α
µσdv

µvσ − vνvµΓ νµαdvα = 0.

Now, paying attention to some notation adjustments, we can express global
spacetime transformations as

x′µ = χµνx
ν + aµ (corresponding to Lorenz plus translations). (70)

Accordingly previous explanation, local implementation, however, requires
at each point of spacetime

x′µ = χµν (x)xν + aµ(x), (71)

that is,

dx′µ = χµν (x)dxν . (72)

The invariance of the geodesic arc element (or the coordinate invariance of
derivatives) is gained by the introduction of a new metric tensor �eld

ds2 = gµν(x)dxµdxν = g′µν(x)dx′µdx′ν , (73)

which transforms in accordance to

g′γη(x′) = χ−1µγ (x)gµν(x)χ−1νη (x). (74)
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To preserve the homogeneity of tensor transformations, the covariant
derivative must obey

DµA
α → D′µA

α = χνµχ
α
βDνA

β . (75)

This condition may be achieved by

DµA
α = ∂µA

α + ΓαµσA
σ, (76)

with the connection

Γαµσ =
1

2
gαρ [∂µgσρ + ∂σgµρ − ∂ρgµσ] . (77)

Despite all this, the gauge of gravitation is entirely based on the geometric
concept of the gravitational �eld, which derives directly from the spacetime
structure, unlike the other physical �elds.

Exercise 2.21 Prove that for a change of coordinates, from primed to un-
primed, the simple partial derivative yields to a non-homogeneous tensorial
transformation.

2.3 Teleparalell gravity in its fundamentals

Within the context of gauge theories, it should be mentioned the telepar-
allel gravity relating to the translation group. In this theory, each point of
spacetime carries an associated Minkowski tangent space over which the
translation group � the gauge group as such � acts. The crucial gauge
�eld is the translational potential Baµ which takes values in the correspond-
ing Lie algebra Bµ = Baµ∂a, where ∂a is the generator of the in�nitesimal
translations. The anholonomic indice a comes from the Minkowski metric
assumed, that is, ηab = (+1,−1,−1,−1). The most important feature of
this model is the introduction of a vierbein (or tetrad) �eld that can be ap-
plied to de�ne the linear Weitzenböck connection . This connection presents
torsion, not curvature. In teleparallelism, torsion accounts for gravity in a
mechanistic way, going in the opposite direction to that of GR.

Under a local in�nitesimal translation of the tangent space coordinates,
say εa, the gauge �eld trasnforms as

B′
a
µ = Baµ − ∂µεa. (78)

Vierbein �eld haµ then rises according to

haµ = ∂µx
a + Baµ. (79)
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Given the above tetrad, which represents four linearly independent �elds
built by the mapping from tangent space to Minkowski space, we may write
the Weitzenböck torsion connection

Γ ρ(W )
µν = hρa∂νh

a
µ, (80)

with no curvature. Torsion tensor is written as

T ρνµ = Γ ρ(W )
µν − Γ ρ(W )

νµ = hρa
(
∂νh

a
µ − ∂µhaν

)
, (81)

from which we get the �eld strength (the torsion written in the tetrad basis)

F aνµ = haρT
ρ
νµ. (82)

Then, torsion is the �eld strength of the translational group . Physicists
have studied teleparallel gravity with greater interest from the beginning of
this century with eyes towards quantization of the fourth interaction, but
non-zero torsion-based gravity has several open issues; for instance, black-
holes are found to have di�erent behavior according to curvature and torsion
analysis. My opinion, which in fact is not only mine, is that in the current
state of knowledge in which we are, to take a model of gravity based on
torsion or curvature is merely a matter of personal preferences. Particularly,
the introduction of connections with torsion and no curvature seems to be
inappropriate to modeling spacetime evolution from timelike or spacelike
paths, since in the teleparallel equivalent of GR there are no geodesics at
all, but force equations. Although this might seem very attractive, there
is something of a throwback to the old mechanical design, especially the
classical idea of force. I believe that we are not looking for a nostalgic view
but a really new physics.

2.4 The gauge in Lyra's geometry

Many works appeared on cosmology with Lyra's geometry from authors as
Reddy and Innaiah [33], Reddy and Venkateswarlu [34], both in the eighties,
and more recently Shchigolev [47]. Shchigolev even says that �[...] Lyra's
geometry can be considered as the candidate for modi�cation of the con-
temporary cosmological models, the necessity of which is almost generally
recognized� [47]. As Lyra himself said [22], �[...]Es besteht eine so nahe in-
nere Verwandtschaft des hier gegebenen Aufbaus der In�nitesimalgeometrie
mit demjenigen Weyls aus dem Jahre 1918, daÿ man ebensogut von einer
Modi�kation der Weylschen Geometrie sprechen könnte� (There is such a
close inner relationship of the in�nitesimal structure given here with that
from Weyl (1918) that one could just speak of a modi�cation of Weyl's
geometry)10. Thus, Lyra's geometry is a generalization of Riemannian ge-

10 Translated from German by the author.



32 Nilo Silvio Costa Serpa

ometry11 � initially taken in a manifold not endowed of a metric � with a
positive de�nite function, the scalar �eld χ(xk) for scale changes, in which
the reference system is de�ned not only by the coordinates but also by in-
cluding that scalar �eld, that is, the gauge function χ(xk) [22]12, so that
the Levi-Civita-Christofell connection is χ−1-gauged and added of a nega-
tive term referring to the vector displacement of a given parallel transport
between two neighboring points. Therefore, a change in reference system is
in fact a change of coordinates and a gauge transformation, all at once.

A tensor metric gµσ is subsequently introduced, and the new asymmetric
connection is given by

†Γαµσ = χ−1Γαµσ −
1

2

(
δαµφσ + δασφµ − gµσφα

)
, (83)

where †Γαµσ is symmetric in only the lower indices, Γαµσ is the usual connec-
tion 13, and φσ is the displacement vector �eld. The geodetic arc element
in Lyra's manifold has the form

ds2 = χ2gµσdx
µdxσ, (84)

and the change from a reference frame
(
χ, xi

)
to
(
χ′, x′i

)
is obtained doing

χ′ = χ
(
χ, xk

)
, x′i = xi

(
xk
)
. (85)

It is important to add that the Jacobian obeys∣∣∣∣∂x′i∂xk

∣∣∣∣ 6= 0

11 The reader can expand their skills in Riemannian geometry, for example, with ref-
erence [42].
12 In words from Lyra: �[...]Dabei wird der Eichbegri� nicht mehr als Festlegung von
Längeneinheiten verstanden, sondern schon im strukturlosen Raum als ein mit dem
Koordinatensystem gleichberechtigter Bestandteil des Bezugssystems eingeführt� (Here,
the calibration term is no longer understood as establishing length units, but introduced
already in the structureless space on an equal footing with the coordinate system part
of the reference system). Translated from German by the author.
13 Whenever possible, it is desirable to re�ect upon the precise meaning of the objects
under study. Weaving formal considerations on the structure of Riemannian manifolds,
Weitzenböck [53] summarized his conclusions by saying the following : �[...]die Functio-
nen Γ ρµν de�nieren die "in�nitesimale Parallelverschiebung" der Vektoren (und damit
auch die von Tensoren höherer Stufe), oder auch: die Funktionen Γ ρµν de�nieren den
"a�nen Zusammenhang" der Mannigfaltigkeit� ([...] function Γ ρµν de�nes the "in�nites-
imal parallel displacement" of the vectors (and thus also of tensors of higher order), or
else function Γ ρµν de�nes the "a�ne relation" of the manifoldness). Translated from
German by the author. Thus, Weitzenböck understands function Γ ρµν as the analytical
representation of the structural geometrical essence of a Riemannian manifold, ultimately
its "holonomyness" rephrased in operational description encoded by an algorithm of par-
allel transport .
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and
∂χ′

∂χ
6= 0.

Lyra's geometry has the fundamental property that the length of a vector
in parallel transport does not change, in contrast with Weyl's geometry. Gauge

theories give

a unique

possibility of

describing,

in the

framework of

quantum

�eld theory,

the

phenomenon

of

asymptotic

freedom

(Faddeev and
Slavnov,

1980).

2.5 The quantum spacetime in Lyra's geometry X
Recently, focusing some exotic e�ects in the interaction of two supermas-
sive bodies, I proposed a new approach on quantum gravity in which it
is considered � having in mind that any region in space is continually
being expanded (or compressed), so that there are no rigid structures at
all14 � a metric in singularity functions , making it possible to analyze
any in�nitesimal timelike element of a geodesic in a gravitational singu-
larity with no vanishing of space components of the metric tensor, but
nulling the participation of space in the geodesic path simply choosing a
value of the spacelike x-variable for the in�nitesimal element in Macauley
kets , d 〈x− ε〉2α, with the restriction x < εα [46]. Accordingly, the space
still exists in the singularity, however, as it was �frozen�. This means that
the geometry of spacetime �uctuates (or undergoes excitations) over �non-
space�, apart from the trivial case of the gµσ = 0 solution [44]. Such a
work refers to a phenomenological theory concerning a possible e�ect of
time machine between two massive bodies interacting with one another.
Unfortunately, current criticism on physics often lacks of considerations on
conceptual and semantic structures. Once the work was based on a propo-
sition about the behavior of a black-hole binary system, I would like to
clarify the term �proposition�, since proposition is only a sentence that can
be true or false, a statement to be proved, explained, or discussed 15. In
the referred work, it is about a lawlike statement depending obviously of
further observational corroboration. Either in math or physics, the meaning
of �proposition� is basically the same, di�ering only in the essence of the
veri�cation process. From Bunge's analysis of speci�c lawlike statements
(LLS), I brie�y conclude that the proposition enunciated in reference [46]
is

14 In fact, it is quite comfortable to take on this premise, even if one consider simple
thought experiments in special relativity, since in a perfectly rigid object the speed of
sound would be in�nite, contradicting the principle that the highest speed is the speed
of light.
15 This discussion with eminent colleagues physicists from Bulgaria was particularly
important for advancing the work in question.
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1. Regarding their referents � property-referent LLS: proposition re-
ferring to constant relations among selected aspects of facts or properties
of entities.

2. Regarding its precision� predicate-imprecise LLS: proposition con-
taining coarse predicates, like �strong�, which lack extensional and/or
intensional precision.

3. Regarding its structure of predicates � existential LLS: limited
scope proposition involving two or more atomic predicates.

There are several other items of propositional classi�cation in Bunge's work
, but these three seem su�cient (the reader must acquaint himself with that
proposition in the given reference). The phenomenological model presented
at Planck scale brings the advantage of establishing some reasonable physi-
cal predictions about the spacetime behavior under the intense gravitational
compression of two supermassive bodies, and introduces an original way to
match quantum spacetime with quantum Riemannian metric in accordance
with Einstein's �eld equations . I wish I could present a more extensive dis-
cussion, confronting various theories. However, even if there was space in
these notes, this would be an impossible task, since the necessary availabil-
ity for that is beyond my possibilities at the moment. Therefore, I want to
emphasize only my investigations to make compatible with GR the Planck-
ian dimensions of certain gravitational singularities where the shortdistance
quantum nature of spacetime becomes relevant.

From the above scenario, since no e�ective displacement occurs, �eld
becomes static in space, so that the connection

Γα00 =
1

2
gαρ (∂0gρ0 + ∂0g0ρ − ∂ρg00) (86)

reduces to

Γα00 =
1

2
gαρ (∂0gρ0 + ∂0g0ρ) , (87)

in which

∂0gρ0 =
∂gρ0

∂ 〈t− ε0〉
=

∂gρ0
∂ 〈x− ε〉0

;

∂ρg00 =
∂g00

∂ 〈x− ερ〉
=

∂g00
∂ 〈x− ε〉ρ

.

The quantum spacetime was matched with quantum Riemannian metric in
order to obtain the correlation function

〈0| gµσd〈x− ε〉µd〈x− ε〉σ |0〉 = −d〈x− ε〉20. (88)

Although it has been produced a certain number of works applying Lyra's
geometry , very little e�ectively was gained so far, except, perhaps, the
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interpretation related to the cosmological constant as I shall discuss be-
low. Nevertheless, the search for a suitable physics to describe gravitational
singularities led me to a complex geometry resulting from a combination
of Lyra's geometry with the geometry of singularity functions described in
[44]. Using Lyra's geometry, the gauged connection gets the general form
(83), which restricted to timelike singularity coordinates gives

†Γα00 =
1

2
χ−1gαρ (∂0gρ0 + ∂0g0ρ)−

1

2
(δα0 φ0 + δα0 φ0) , (89)

with

φ0 = φ0 = β〈t−ε0〉
16 (90)

φα = φα = φ〈x−ε〉α , (91)

and

φ〈x−ε〉α = 0

for x < εα.
The argument that the indices simplify the formalism is really a scam.

Therefore, unlike the literature in general, we shall make a careful explana-
tion of the meaning of these expressions. As stated, Γαµσ is symmetric only
in lower indices, which means that "α" does not commute, in general, with
indices "µ" and "σ", appearing as superscript symbolizing contravariance,
i.e., in�nitesimal displacement. Also, in accordance with previous deduc-
tions that led to the geodesic equation in singularity functions [44], indices
"µ" and "σ" were taken as time-labels while "α" and "ρ" became space-
labels ("ρ" replaces "α" to characterize the metric tensor component as a
function of time and space in partial derivatives, but this is done without
any loss of generality). Thus, according to the second term in the right-hand
side of expression (89), those in�nitesimal displacements run over time, on
the temporal component of the vector �eld, in the spatial directions "α"
of this �eld. However, as there is no spatial displacement (see properties of
singularity functions, taking care not to confuse "spatial direction" with
"spatial displacement"), the spatial components of the displacement vector
�eld cancel out, thus leaving the expression (89).

16 In my previous work [46], the adoption of singularity functions aimed to allow dis-
regard the participation of space in the calculation of the invariant commoving timelike
element, with no need to guess lack of space. Thus, timelike geodesics are determined
by application of the properties of Macauley kets on their space parts, since the usual
di�erential coordinates were replaced by di�erentials of intervals. Thus,

φµ =
(
β〈t−ε〉0 , 〈x− ε〉1 , 〈x− ε〉2 , 〈x− ε〉3

)
→ (β, 0, 0, 0)

for xµ < εµ .
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The parallel transfer of a vector ω in Lyra's geometry is given by

δωα = −
(
†Γαµσ −

1

2
δαµφσ

)
ωµχdxσ. (92)

If one assumes the natural gauge (χ = 1), the vector length is not changed
under parallel transfer.

In its general form, the geodesic is now described by

χ
d2〈x− ε〉α

dτ2
+ †Γαµσ

χd〈x− ε〉µ
dτ

χd〈x− ε〉σ
dτ

= 0; (93)

d2〈x− ε〉α
dτ2

+

[
χ−1Γαµσ −

1

2

(
δαµφσ + δασφµ − gµσφα

)]
×
d〈x− ε〉µ

dτ
χ
d〈x− ε〉σ

dτ
= 0; (94)

d2〈x− ε〉α
dτ2

+ Γαµσ
d〈x− ε〉µ

dτ

d〈x− ε〉σ
dτ

−χ
2

(
δαµφσ + δασφµ − gµσφα

) d〈x− ε〉µ
dτ

d〈x− ε〉σ
dτ

= 0. (95)

Lastly, for timelike geodesics in singularity representation,

d2〈x− ε〉α
dτ2

+Γα00
d〈x− ε〉0

dτ

d〈x− ε〉0
dτ

− χ
2

(δα0 φ0 + δα0 φ0)
d〈x− ε〉0

dτ

d〈x− ε〉0
dτ

= 0. (96)

An obvious advantage of Lyra's geometry is that under the new connection
a vector length is unchanged after a parallel transfer, which is physically
appropriate, especially in the case of displacements only in time, whose
comprehension is far from trivial. Also, as yet we'll see below, Lyra's ge-
ometry has raised new interpretations to the cosmological constant from
Einstein's equations .

We consider, for instance, the FLRW background. As we know, Ein-
stein's �eld equation in Lyra geometry is

Gµσ +
3

2
φµφσ −

3

4
δµσφ

αφα = −κTµσ, (97)

which gives

G00 +
3

2
φ0φ0 −

3

4
δ00φ

0φ0 = −κT00; (98)

G11 +
3

2
φ1φ1 −

3

4
δ11φ

1φ1 = −κT11; (99)
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G22 +
3

2
φ2φ2 −

3

4
δ22φ

2φ2 = −κT22; (100)

G33 +
3

2
φ3φ3 −

3

4
δ33φ

3φ3 = −κT33. (101)

Restricted to timelike geodesics, as in the quantum theory of spacetime
presented in [46], we stay with

G00 +
3

2
φ0φ0 −

3

4
δ00φ

0φ0 = −κT00. (102)

From this, the Friedmann-like �eld equation is written as

G00 +
3

4
δ00β

2 = −κT00, (103)

or

−G00 −
3

4
δ00β

2 = κT00. (104)

Since we have

−G00 =
3k

R2
+ 3

(
Ṙ

R

)2

, (105)

them

3

(
Ṙ

R

)2

+
3k

R2
− 3

4
β2
〈t−ε〉0

= κρ〈t−ε〉0 ,

(
Ṙ

R

)2

+
k

R2
− 1

4
β2
〈t−ε〉0

=
8πG

3
ρ〈t−ε〉0 . (106)

All the letters designate the well known quantities of GR and cosmology,
unless otherwise indicated. Nowadays, many authors understand the con-
stant displacement vector �eld in Lyra formalism with the same physical
role as the cosmological constant in the standard GR. In this sense, we can
say that the cosmological constant naturally results from the introduction
of the Lyra gauge. Therefore, it is expected the new gauge could re�ect the
characteristics of the cosmological constant term, that is

φ1φ1 = φ2φ2 = φ3φ3. (107)
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The meaning of the parallel transfer of a time interval

Timelike geodesics are treated with a bit of common sense even if one
understands that it is in a conceptual level very far from a naive physical
framework. This is so because time in GR is not the time of clocks but an
evolutionary variable, and it is di�cult to us to discard old archetypes like
rules and clocks.

Whenever we seek a new physics to give account for an almost im-
penetrable phenomenon we try to �nd the invariants of the theory, the
referents that make possible to get some knowledge about, and this search
unwittingly drags us again to the classical measuring tools for thought ex-
periments. From my point of view, the most interesting thing about the
introduction of Lyra's gauge is the feasibility of the description of a no-
tional parallel transfer in time without changing the duration, regardless
of the spatial direction. This is an invariant useful to describe one of the
quantum faces of gravity.

As we have seen brie�y, physicists try to interpret the real meaning
of Lyra's extra-displacement terms in Einstein's equations giving to them
the role of cosmological constant. Nevertheless, in my approach we have
to return to Lyra's geometry discussing what is a time parallel transfer of
a time interval in a certain direction. I remember that space is �frozen�
in the singularity representation of a timelike geodesic; there is no space
displacement. Therefore, in the natural gauge a time parallel transfer
of a time interval is in fact a projection of this time interval in one
space direction targeting another virtual geodesic path in which space
coordinates would be also treated by singularity functions. This is a way
to say that, under the same conditions, we have the same behavior of
nature. In my work, these conditions feature the so-called G-closure 17.
Importantly, this geometric review in no way precludes the representation
of the cosmological constant; rather, it emphasizes the invariance of the
duration under parallel transport, thus characterizing a constancy of
nature.

17 In section 2.1, I argued for a G-closure in a semiclassical approach where it was
supposed the existence of gravity superpartners. Now, the situation is very di�erent,
since there are no superpartners but quanta of spacetime.
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III PART: COSMOLOGY

...if the variety of things we perceive in this
extraordinarily varied world could be described

in a single equation, the path that we would take from
that equation to the things we perceive should be terribly

long and quite di�cult to follow.
Hermann Bondi

3 The standard model and its scourge

From the many objections that have been made to the standard model, we
shall comment only some of the most relevant. As once told Raychaudhuri,
�[...] if standard cosmology were completely successful, there would hardly
be any need to explore other models of the universe, except perhaps for
mathematical recreation� [32]18. Behind this observation is the fact that
isotropy herewith homogeneity are accepted so to say ad hoc, since there
is no solid empirical basis to ensure both. Tolman already warned that we
should not radicalize a belief in a homogeneous universe, hinting the limi-
tations arising from our observational condition [49]. Usually it is accepted
the cosmic background radiation as an indisputable indicator of a Big-Bang
and an isotropic universe in its own origin. However, speculations about the
existence of strong magnetic �elds in the early stages of the universe not
only contradict the isotropic model, but severely a�ect the current concep-
tion of the meaning of the cosmic background radiation.

A great paradox emerges from the adopted metric in the standard
model. Let us begin with the current ansatz

ds2 = ±dt2 ∓ R2(
1 + kr2

4

)2 (dr2 + r2dθ2 + r2 sin2 θdϕ2
)
, k = 0,+1,−1,

(108)
with R (an arbitrary function of time t) obeying Einstein's �eld equations(

Ṙ

R

)2

=
8πG

3
ρ(t) (109)

and

ρ̇(t) + 4ρ(t)
Ṙ

R
= 0 (110)

18 In fact, Raychaudhuri's initial motivation was restricted to a universe represented
by a time�dependent geometry with no assumptions of homogeneity or isotropy.
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for the early times, when the universe was dominated by radiation, being
ρ the energy density of the matter. In such circumstances, we may put the
second equation as

4ρ(t)Ṙ = −ρ̇(t)R; (111)

4Ṙ

R
= −

ρ̇(t)

ρ(t)
. (112)

To solve this equation we assume exponential functions as

R = Meγt; Ṙ = γMeγt;

ρ = Neλt; ρ̇(t) = λNeλt,

where M and N are constants. This provides

4γMeγt

Meγt
= −λNe

λt

Neλt
; (113)

4γ = −λ ∴ γ = −λ
4
. (114)

Now, we can write
ρR4 = const. = C1. (115)

Returning to the �rst Einstein's equation, we substitute last result and gain(
Ṙ
)2

=
8π

3

C1

R2
; (116)

Ṙ =

√
8πC1

3

1

R
;

RdR = C2dt;

R2 = 2C2t;

R = C3t
1/2. (117)

From the above metric, it is simple to see that for any signal we must have

dt2 − R2dr2(
1 + kr2

4

)2 ≥ 0,

which implies
r∫

0

dr(
1 + kr2

4

) ≤ t∫
0

dt

R
.

With R ∼ t1/2 in the ultrarelativistic state, the integral on the right side of
the inequality converges, which means that, at any time t, communication
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can occur only up to a �nite distance, a fact that con�gures a horizon
and features a con�ict with the observed isotropy of the cosmic microwave
background.

These and other questions make us wonder why there were settled so
many barriers against the study of inhomogeneous cosmologies. As well
wrote de Vaucouleurs, �[...] With few exceptions, modern cosmology theo-
ries are variations of homogeneous and isotropic models of general relativity.
Other theories are commonly referred to as "heterodox", probably a warn-
ing for students against the heresy� [52].

3.1 Anisotropic and inhomogeneous cosmologies

In a homogeneous universe, the isotropy at a point implies isotropy in
all points (being isotropy the property by which the universe looks like
the same in all spatial directions, that is, all directions are equal). To
avoid confusion, homogeneity and isotropy does not necessarily imply one
another. Anisotropic cosmological solutions may originate from inhomo-
geneous models like Lemaître-Tolman-Bondi cosmology, Szekeres cosmol-
ogy and Stephani cosmology, or from completely homogeneous models like
Gödel's cosmology. These notes shall give emphasis on the �rst and third
cases in order to exploring the most relevant aspects of inhomogeneous
cosmologies.

Lemaître-Tolman-Bondi Cosmology X
At small length scales there where observed deviations from the postulated
homogeneity of the universe at large scales, a fact that imposes 1) - the need
to investigate whether the accelerated cosmological expansion is real, that
is, whether the acceleration is not an e�ect of the inhomogeneity, and 2) -
the necessity to look for the length scale from which the universe becomes
homogeneous, if indeed it is.

Among several inhomogeneous cosmological models, the Lemaître-
Tolman-Bondi (LTB) model � the simplest and perhaps the only prac-
ticable in fact � has been applied with some interesting results as an al-
ternative to explain the universe without cosmological constant at scales
O(10)h−1Mpc or even larger. The LTB metric under the assumption of
spherical symmetry in simultaneously synchronous and commoving frame
can be read as a branch of solutions of the equation,

ds2 = −dt2 + b2 (r, t) dr2 +R (r, t)
2 (
dθ2 + sin2 θdφ2

)
(118)
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that describes an inhomogeneous collapse of dust or, which comes to be the
same, its time reversal. These solutions are given by,

b2 =
R′ (r, t)

2

1 + f (r)
, (119)

where the function f(r) can be thought as a spatial curvature parameter
and is one of the three classical LTB arbitrary functions, and R is the
angular diameter distance.

In spite of the challenges it faces and the objections faced to its major
presuppositions, which one expects from a LTB model is its simultaneous
and reasonable agreement with data from cosmic microwave background
(CMB), from type Ia supernova, from structure formation and so forth.
For example, Alnes et al. (2006) showed that a LTB region which reduces
to an Einstein-de Sitter cosmology at a radius of 1.4Gpc can match both
the supernova data and the location of the �rst acoustic peak in the CMB
[2].

Lastly, the phenomenon of weak gravitational lensing wins major expres-
sion as a result of inhomogeneities. I developed, in perturbative context, a
formalism for the refractive index in the LTB metric, capable to aid future
measurements of the degree of inhomogeneity for di�erent redshifts [45].
That refractive index is given by

n̄ =
1

C̄

√
g22
g11

e
−ω(t)

∫ √
ε11/2ε44
R(r, t)

dr
, (120)

where ε is a small perturbation in the metric g, C̄ is a constant of integra-
tion, and ω(t) is a function to be determined. The physical interpretation
of this equality is that the null geodesic in the representation LTB adopted
here is entirely determined by the scalar function n̄, since it includes all
relevant geometric information about the de�ection of the light beam. As
expected, the perturbation in the metric also contributes to the refractive
index, hence, for the de�ection.

LTB in 5D

Following the LTB formalism, for an inhomogeneous cloud of dust, spheri-
cally symmetric, described in a �ve-dimensional spacetime, we would have
the line element given by

ds2 =
R′(r, t)2dr2

1 + f
+R(r, t)2

[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)]
− dt2, (121)
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where (t, r, χ, θ, φ) are synchronous-comoving coordinates and f is the usual
arbitrary function of comoving coordinate r. Coordinate χ is the �fth di-
mension implemented in trigonometric representation. Function R(r, t) re-
mains solution of the �rst independent �eld equation

Ṙ2 =
M(r)

R2
+ f(r). (122)

Both arbitrary functions f(r) and M(r) result of the integration of
�eld equation. Einstein's equations in �ve dimensions take the form
^

Gµν = −8πG5

^

Tµν , whose non-zero components are

^

G00 = 3
(−2R(r, t)Ṙ(r, t)Ṙ′(r, t)− 2R′(r, t)Ṙ(r, t)2 +R(r, t)f ′ + 2R′(r, t)f)

2R(r, t)2R′(r, t)
,

(123)
^

G11 = R′(r, t)2
(3R(r, t)R̈(r, t) + 3Ṙ(r, t)2 − 3f)

R(r, t)2(1 + f)
, (124)

^

G22 = R′(r, t)−1(2R(r, t)∂rR̈(r, t)R′(r, t) + 2R(r, t)Ṙ(r, t)Ṙ′(r, t)−
−R(r, t)f ′ +R′(r, t)Ṙ(r, t)2 −R′(r, t)f +R(r, t)2R̈′(r, t)),

(125)

^

G33 = sin2 χ
^

G22, (126)

^

G44 = sin2 θ
^

G33. (127)

There is very few evidence of productive applicability of metrics with more
than four dimensions connected to observational data in cosmology. From
a mathematical point of view, however, it is possible to describe a LTB
cavity by means of a 5D metric embedded in a 4D friedmannian back-
ground. The idea is to assume that the inhomogeneity carries in the �fth
dimension information able to provide it with a symmetry such that its
structure remains irreducible to FLRW unless at the junction between the
FLRW background and the LTB cavity. Here it is worth to make a brief
discussion of cosmological symmetries. The symmetries of spacetime, or
their isometries, constitute a group for which a) the identity is an isometry,
b) the inverse of an isometry is a isometry, and c) the composition of two
isometries is an isometry. We de�ne the orbit of a point p as the set of
all points for which p can be moved by the action of translative isometries
of space. The orbits are necessarily homogeneous, i.e., all physical quan-
tities are the same at every point. Once an invariant manifold is a set of
points mappable in themselves by the isometry group, the orbits are neces-
sarily invariant manifolds. The freedom of translation in a given space (or
transfer dimension) is generally denoted by the letter "s", being assumed
s ≤ n, where n is the number of space dimensions. An important subgroup
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of the isometry group, whose dimension may be considered in each p, is the
isotropy group, i.e., the group of isometries that leave p �xed (rotations).
In general, the dimension number of a rotation space is represented by the
letter "q" being established that q ≤ 1/2n(n− 1), where n is again the
number of space dimensions. Thus, the dimension D of the isometry group
of a given space is D = s + q (translations + rotations). In fact, continuous
isometries are generated by the Lie algebra of Killing vectors. The action
group is characterized by the nature of its orbit in the space in question.

For a cosmological model, due to the spacetime four-dimensionality, the
possible orbital dimensionalities are s = 0, 1, 2, 3, 4. The isometry group
featuring LTB models in 4D is the Gs+q = G3 or G(2, 1), isomorphic to the
pseudo-orthogonal real special group s + q, SO(2, 1). Each LTB model is
characterized by a two-dimensional surface of spherical symmetry s = 2; all
observations made anywhere on the surface are rotationally symmetrical
around a privileged space direction: q = 1; therefore, DLTB4D = 2 + 1 = 3.
However, the implementation of a �fth angular dimension corresponds to
the introduction of an extra degree of translational freedom p = 1, where
DLTB5D = s + p + q = 2 + 1 + 1 = 4. Therefore, an LTB model in 5D,
as stated above, requires a group of isometry ba∇G4, isomorphic to the
orthogonal singular group s + p + q, SO(2, 1, 1) corresponding to the Lie
inhomogeneous algebra so(2, 1, 1).

Thus, from the above discussed, we conclude that, out of the junction,
the only way to obtain a LTB 4D metric reducible to FLRW would be by
an unknown mechanism of spontaneous symmetry breaking ‖ Q ‖, such
that ‖ Q ‖ SO(2, 1, 1) −→ G3 19. This study was based on the belief that
the universe evolves preserving material symmetry between homogeneous
and inhomogeneous regions. That symmetry could only be broken by still
unknown spontaneous mechanisms.

Stephani cosmology X
Another alternative to ΛCDM modeling is the so-called Stephani cosmology,
with its exotic and irrotational perfect �uid driving the exact solution of
Einstein's equations [20]. This cosmology and their subcases do not admit
in general a barotropic equation of state, a fact that probably in�uenced the
poor literature in the subject. An atypical and interesting work, however,
came from Tupper, Marais and Helayël, where these authors show that the
Stephani exact solution of Einstein's equations steered by that perfect �uid

19 The unique situation that is physically and clearly need to �nd a LTB 4D metric re-
ducible to FLRW occurs at the junctions, where the manifold has to be four-dimensional.
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is compatible with an uncommon �velocity� linear k-essence [50]. A curious
observation of these authors is on the 5-vector potential AM from which

the expression AMA
M = [A •A]

(5)
is assumed at the unitary gauge limit of[

A(θ) •A(θ)
](5)

(with A
(θ)
M mapped on AM + ∂Mθ), thus not compromising

gauge invariance. Howsoever, having in mind that barotropic equations of
state might be too restrictive, some authors have engaged in the search for
something like a �thermodynamic scheme� [7] from the energy-momentum
of a perfect �uid T ab = (ρ+ p)uaub + pgab, where ρ, p and and ua are
respectively the matter-energy density, pressure and 4-velocity. Although
this approach is quite interesting, it is beyond the scope of present notes.

Stelmach and Jakacka produced a fairly comprehensive paper on non-
homogeneity of the universe driven its acceleration under a Stephani cos-
mology [48]. However, the formalism adopted is not very friendly to our
purposes, so that we shall choose the formalism presented by Hashemi et
al. [14]. So, the metric is given by

ds2 = −D2dt2 + V 2
[
dr2 + f2

(
dθ2 + sin2 θdφ2

)]
, (128)

with

D =
1 + F 2 (K −RK,R)

1 +KF 2
(129)

and

V =
R

1 +KF 2
. (130)

In these expressions,K(t) is the curvature parameter,R(t) is the scale factor
and K,R = K,t/R,t = dK/dR; functions f(r), F (r) are de�ned accordingly
three possibilities:

1. f = r, F = r/2;
2. f = sin r, F = sin (r/2) ;
3. f = sinh r, F = sinh (r/2) .

Also it is assumed the energy-momentum tensor expressed above. What is
very interesting here is the transformation that relates the radial coordinate
r to the Stephani radial coordinate, say

r =

∫
dr̃

1 + k0r̃2/4
, (131)

for k0 = 0,±1. Setting the ansatz (128) combined with the perfect �uid
expression into Einstein's equations we obtain the time-time component of
�eld equations (

Ṙ

R

)2

+
(K + k0)

R2
=

8πG

3
ρ, (132)
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in which

k0 = 0, f = r, F = r/2;

k0 = 1, f = sin r, F = sin (r/2) ;

k0 = −1, f = sinh r, F = sinh (r/2) .

An extensive derivation of some observational quantities which describe the
evolutionary kinematics of the Stephani universe, such as Hubble parame-
ter and deceleration parameter, can be found in reference [14]. From such
derivations, for an inhomogeneous Stephani model featured by a time de-
pendent curvature index, with solely dust as the �lling up �uid component
(an oversimpli�cation hardly acceptable), it was reported in the above refer-
ence an age of the universe notably larger than the estimated age provided
by FLRW models with no exotic matter. Also, being this model formally
described by dust-like matter, the curvature term is such that it simulates
an exotic �uid driving the power-law in�ation occurred at a later time.

Lastly, as in cosmology the redshift-magnitude relation is a key measure,
I recommend to readers the formalism of power series around the observer's
position for �nding that relation proposed by Ellis and MacCallum [11].

4 Final remarks

Supergravity is, of course, a very attractive theory in the sense that, as
pointed out by Wess , we may say that we understand a given system if we
�nd a symmetry (or a supersymmetry) in the dynamics of this system [54].
For instance, in terms of canonical commutation relations, supersymmetry
reads the energy momentum density tensor as a spin 2 object which is the
graviton. But, even if we accept the recognized symmetries as de additional
dimensions constituting the inner space of the system, the inexorable fact
is that those supersymmetries remain year by year an experimental hope,
perhaps during a never ending wait.

One thing I learned as a theoretical physicist is that one can never
blindly accept a model as much as we like it. During last decades, theo-
ries have become more mathematical than physical, in part because we are
dealing phenomenologically with a reality di�cult to access empirically, and
this requires us to be much more cautious in our re�ections on the valid-
ity of our representations. I was particularly happy to see that from my
�rst readings on quantum gravity, the same author who impressed Rovelli
, Chris Isham , also caught my attention. Since then, I never stopped to
review my own doubts and concerns about quantum gravity. I think that,
at a given moment, I questioned my position on the supergravity theories,
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but not properly abandoning them, and this is what led me to the formula-
tion of my quantum approach of the spacetime. Indeed, such an approach
is still necessarily phenomenological, but at least it does not raise extra
dimensions, nor requires the acceptance of hypothetical particles, being
compatible with general relativity.

The study of the theories of gravity plays a fundamental role in the
progress of human understanding on cosmology. In particular, the physics
of gravitational singularities, such as black-holes and the former Big-Bang,
certainly has the quantum-mechanical key to shed lights on the intersection
between GR and QM within the framework of the modern cosmological
theories. Indeed, there is still much speculation about the physics of black
holes and Einstein's bridges (the original denomination for wormholes). For
instance, Maldacena and others consider the possibility of entanglement
between two black-holes, giving rise to a wormhole, that is, a "conduit"
shared by both [24]. While it still takes a long time to reach a clearer
picture of the fourth interaction, personally I do not think that a true
uni�cation of fundamental interactions is possible, but just a uni�cation
of general principles through a �master� principle. Such uni�cation is in
sharp progress (although at certain moments in a somewhat confusing
way) because we already have that master principle: the principle of gauge.
As we have seen, this principle is so powerful that we can appreciate it
in classical theories as thermodynamics applied to engineering systems; so
profound that we can see it sprout naturally in every phenomenology of the
smooth transformations. From Weyl to Rovelli, through Fock, Lyra, Yang,
Mills and O'Reifeartaigh, the gauge theories remain the most beautiful
and e�ective theoretic tools that the reason has produced at all times.

Quanto mais fundamente penso, mais
Profundamente me descompreendo.

O saber é a inconsciência de ignorar...
Fernando Pessoa
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CHAPTER II
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Quantized spacetime versus supergravity

The �rst condition to establish a connection between the two approaches
is that supergravity must appear only in a G-closure with a core embedded
into an adS spacetime surrounded by a de Sitter layer, a great conjecture
still waiting for further investigations. Therefore, a complete and consistent
explanation is beyond the possibilities for now. Nevertheless, to my knowl-
edge, adS conjectures about bubbles of compressed spacetime have not yet
been addressed in a phenomenological proposal. So, nothing forbids to do
a preliminary study aimed at the outer region dominated by dS metric.

The adS background and the paradigm for G-closures

Anti-de Sitter geometries are studied for a long time. Several works are
developed last decades based upon adS scenarios, mainly focusing on black-
holes. For instance, Kichakova et al. [17], studying the thermodynamics
of asymptotically adS black-holes, got the so-called hairy black-holes in a
spherically symmetric frame as solutions (with magnetic �elds only) of the
Einstein-Yang-Mills-SU(2) equations for a negative cosmological constant
Λ = −3/L2 within the ansatz

ds2 =
dr2

N(r)
+ r2

(
dθ2 + sin2 θdφ2

)
− σ2(r)N(r)dt2, (133)

where for the metric we have

N(r) = 1− 2m(r)

r
+
r2

L2
, (134)

with L as the adS radius. They particularized the approach for σ(r) = 1,
satisfying some assumptions referring to a horizon located at r = rH > 0
in order to write the Schwarzschild adS metric,

N(r) =
(

1− rH
r

)(
1 +

r2

L2
+
rrH
L2

+
r2H
L2

)
, (135)

and the embedded Abelian magnetic Reissner-Nordström-adS metric,

N(r) =
(

1− rH
r

)(
1 +

r2

L2
+
rrH
L2

+
r2H
L2
− α2

rrH

)
, (136)

in which

α2 =
4πG

ĝ2
, (137)

with ĝ as the gauge coupling constant. Also, Alberghi et al., in the early
2000s, gave us an interesting work on thermodynamics for radiating shells
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in adS spacetime where the spherical symmetry was divided into inner and
outer regions separated by a thin massive shell [1]. The inner spacetime was
represented by static coordinates according to the ansatz

ds2i = −Ni(r)dt2 +
dr2

Ni(r)
+ r2dΩ2, (138)

and described by a Schwarzschild metric with

Ni(r) = 1− 2m

r
. (139)

The outer spacetime, due to the radiation from the shell, is described by a
Vaidya-adS in�nitesimal element

ds2o = − 1

No(r, t)

[(
∂tM(r, t)

∂rM(r, t)

)2

dt2 − dr2
]

+ r2dΩ2, (140)

with

No(r, t) = 1− 2M(r, t)

r
+
r2

L2
, (141)

where M(r, t) is the Bondi mass depending on the time because of its re-
lation to the amount of energy �owing out of the shell as radiation. Ana-
lyzing particle production in adS spacetime, Greenwood et al. conducted
a study with negative cosmological constant with a solution for the scale
factor given by R(t) = H−1cos(Ht) where H =

√
|λ| /3. In this case, the

time-dependent adS metric took the same form as dS metric

ds2 = −dt2 +R2(t)
(
dr2 + r2dΩ2

)
, (142)

except for the scale factor R(t). According to the authors, for the decaying
segment of cos(Ht), this time-dependent solution describes a collapsing uni-
verse under the in�uence of the negative constant vacuum energy density
[13]. Many more examples could be given elsewhere [3], [43]. In particular,
for further investigations, I consider an inverse situation of Alberghi's mod-
eling, doing the core of the G-closure described by the Vaidya-adS ansatz
given in equation (140), since radiation �ows from dS external spacetime to
the inner region due to the impacts of gravitons and the consequent mass
intermediation mechanism between the two spacetimes. However Green-
wood's picture seems the simplest representation for the adS central region
of the G-closure, it has the inconvenient to describe a collapsing situation,
which is not the case of my proposal where spacetime is under compression,
not in imploding process.
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Indeed, in this scenario mass is an e�ect of transition between adS and
dS spacetimes. Since some G-closures, at least in principle, are now sup-
posed to be formed by an adS core covered by a dS layershell, we may focus
on the dS spacetime to analyze the compressed region between two massive
bodies in a binary system, leaving aside for further study the characteristic
phenomenology of the adS region.

The external de Sitter spacetime

From now on, I shall concentrate on presenting the latest theoretical results
from my treatment of the spacetime quantum structure, giving a brief on
the �rst ideas.

The second form of the geodesic equation in singularity functions was
deduced in previous work [46] as

d2〈x− ε〉ξ
dτ2

+ Γ ξµν
d〈x− ε〉µ

dτ

d〈x− ε〉ν
dτ

= 0, (143)

where the a�ne connection is

Γ ξµν =
∂〈x− ε〉ξ
∂χη

∂2χη

∂〈x− ε〉µ∂〈x− ε〉ν
. (144)

One must understand that G-closures are bubbles of spacetime where the
continuum itself is under gravitational compression, making spacetime in
permanent contraction, not in expansion. This is like an elastic sheet being
stretched in all directions except in a small area in which it was being
shortened by the action of an opposing force that locally shrinks the sheet
likewise in all directions. When space contracts, the scale reduces and it
appears what I call "translational coupling", that is, a coupling between
translation and contraction in such manner that the �nal result is no real
displacement. In other words, the contraction of space compensates any
displacement, so that the geodesic equation reduces to

d2〈x− ε〉ξ
dτ2

+ Γ ξ00
d〈x− ε〉0

dτ

d〈x− ε〉0
dτ

= 0; (145)

d2〈x− ε〉ξ
dτ2

= −Γ ξ00
d〈x− ε〉0

dτ

d〈x− ε〉0
dτ

. (146)

Since no e�ective displacement occurs, �eld becomes static in space, so that

Γ ξ00 =
1

2
gξλ (∂0gλ0 + ∂0g0λ − ∂λg00) (147)
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reduces to

Γ ξ00 =
1

2
gξλ (∂0gλ0 + ∂0g0λ) . (148)

Now, supposing local isotropy, we can introduce a locally de Sitter clas-
sical background on a manifold which admits �at 3-sections. To �nd the
invariant measure of the spacetime contraction rate, within any interval
of the geodesic line, �rstly we write the invariant element in commoving
coordinates by the correlation function

〈0| gµνd〈x− ε〉µd〈x− ε〉η |0〉 = −d〈t− ε〉20

+R2
〈t−ε〉0

d 〈x− ε〉 d 〈x− ε〉 , (149)

in which we have the e�ective Huble constant as the logarithmic derivative
of the scale factor

Heff ≡
d

d 〈t− ε〉0
ln
(
R〈t−ε〉0

)
. (150)

Comparing expression (149) with the quantum-corrected invariant element
in conformal coordinates, we get

〈0| gµνd〈x− ε〉µd〈x− ε〉η |0〉

= Ω2
{
− [1− C(u)] du2 + [1 +A(u)] d 〈x− ε〉 d 〈x− ε〉

}
, (151)

where u is a time function that corresponds to 1/H for time coordinate
equal to 0 and to 0 for time coordinate equal to ∞. The quantities A(u)
and C(u) are de�ned from the retarded Green's functions of the massless
minimally coupled and conformally coupled scalars, so that

A(u) = −4GretA [a] (u) +GretC [3a+ c] (u), (152)

C(u) = GretC [3a+ c] (u). (153)

From the above unfoldings, we can deduce the scale factor from the
quantum-corrected invariant element in conformal coordinates [55], and re-
late u to t

R〈t−ε〉0 = Ω
√

1 +A(u), (154)

d 〈t− ε〉0 = −Ω
√

1− C(u)du. (155)

Then, for the perspective of �nding a G-closure, we must write

〈0| gµνd〈x− ε〉µd〈x− ε〉ν |0〉 = −d〈t− ε〉20, (156)

for a timelike geodesic, and then

〈0| gµνd〈x− ε〉µd〈x− ε〉ν |0〉 = Ω2
{
− [1− C(u)] du2

}
. (157)
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In short, we can only predict the expectation value of the rate in which the
invariant element evolves in time mode, once a G-closure is manifested. As
already emphasized, such considerations were madden to match quantum
spacetime with quantum Riemannian metric as a way to quantize not the
gravitational �eld, but the spacetime on its own, establishing compliance
between quantum gravity and Einstein's general relativity within a unique
geometric framework. From expressions (154) and (155), assuming Ω =
1/Hu in de Sitter geometry, I have obtained

du

d 〈t− ε〉0
= − 1

Ω
√

1− C(u)
= − Hu√

1− C(u)
, (158)

and so

d

d 〈t− ε〉0

(
lnR〈t−ε〉0

)
= − Hu√

1− C(u)

[
− 1

u
+

1

2

1

1 +A(u)

dA(u)

du

]
=

H√
1− C(u)

[
1− 1

2

u

1 +A(u)

dA(u)

du

]
. (159)

Determining general function A(u) for very high densities from Green's
formalism

As we have seen, Green functions appear crucially in the theory. In former
works, Green's original conception was directed to electrostatic problems
in bounded regions, where the Green function G(r, r′) is the potential at
the point r produced by a unit point charge at r′. Now, an easy illustration
of Green function is given by a force F (t) acting for a very short time on
a particle initially at rest; the force is such that the corresponding impulse
on the particle is chosen to induce a unit change in momentum at a time
t′. Further, at time t, the displacement s(t) of the particle is said to be the
Green function G(t, t′). The global particle motion is obtained by integrat-
ing, from the initial time t0 up to the time t, all the e�ects of the impulses
applied, that is,

sg(t) =

∫ t

t0

G(t, t′)F (t′)dt′. (160)

Several applications of Green's function are available elsewhere, including
a fundamental role in particle physics.

To understand our point, it is interesting to make a basic approach
on Green functions so that later, by this way, we can well understand the
phenomenology discussed. Green's function is now de�ned as

d2G(u, ζ)

du2
= −δ(u− ζ), (0.5 ≤ ζ ≤ 1), (161)
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which corresponds to the general non-homogeneous equation

d2℘

du2
= −f(u), 0.5 ≤ u ≤ 1, (162)

so that, for the same boundary conditions,

G(0.5, ζ) = G(1, ζ) = 0. (163)

As known, delta function is null for all u 6= ζ, from which we deduce

d2G(u, ζ)

du2
= 0, (u 6= ζ). (164)

This equation has solutions to the left and right of u = ζ denoted by

G(u, ζ) =

{
au+ b, 0.5 ≤ u ≤ ζ
a1u+ b1, ζ < u ≤ 1

(165)

where a, b, a1 and b1 are integration constants coming from the boundary
conditions, that is,

G(0.5, ζ) = 0.5a+ b = 0
G(1, ζ) = a1 + b1 = 0

}
∴ b = −0.5a; b1 = a1. (166)

Therefore,

G(u, ζ) =

{
a (u− 0.5) , 0.5 ≤ u ≤ ζ
a1 (u− 1) , ζ < u ≤ 1

(167)

To know the values of a and a1, we must determine the behavior of the
Green's function in the vicinity of u = ζ (the interval |ζ − ε, ζ + ε| with
center at δ(u− ζ)). Also in the limit ε −→ 0, the function must be contin-
uous, and its �rst derivative discontinuous at u = ζ. Thus,

G(ζ − 0.5, ζ) = G(ζ + 0.5, ζ), (168)

a (ζ − 0.5) = a1 (ζ − 1) . (169)

The jump of the derivative from one side of the point u = ζ to the other is
given by ∫ ζ+ε

ζ−ε

d

du

(
dG(u, ζ)

du

)
du = −

∫ ζ+ε

ζ−ε
δ (u− ζ)du, (170)

dG(u, ζ)

du

∣∣∣∣ ζ + ε
ζ − ε = −1, (171)

G′(ζ + ε, ζ)−G′(ζ − ε, ζ) = −1. (172)
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When ε −→ 0,
G′(ζ + 0, ζ)−G′(ζ − 0, ζ) = −1. (173)

Since

G′(u, ζ) =

{
a, 0.5 ≤ u ≤ ζ
a1, ζ < u ≤ 1

(174)

we have, according to equation (173),

a1 − a = −1. (175)

Now, replacing in equation (169),

a (ζ − 0.5) = a1 (ζ − 1) ,
a (ζ − 0.5) = (a− 1) (ζ − 1) ,
a = 2 (1− ζ) ;

(176)

(a1 + 1) (ζ − 0.5) = a1 (ζ − 1) ,
a1 = 1− 2ζ.

(177)

Therefore, the Green's function gets the form

G(u, ζ) =

{
(1− ζ) (2u− 1) , 0.5 ≤ u ≤ ζ
(1− u) (2ζ − 1) , ζ < u ≤ 1

(178)

which is symmetric interchanging u by ζ. Once the Green's function has
been determined, the solution of the equation (162) is obtained from the
integration

℘(x) =

∫ 1

0.5

dζG(u, ζ)f(ζ). (179)

Now, when one speaks of the universe at the Big Bang vicinity, it is evident
a fundamental property: its incredibly high density. One can only hope that
such a density a�ects drastically the very evolution of the spacetime for a
�eeting interval. It is worth to ask how the derivative of the function A(u)
is a�ected, that is, to what extent dA(u) is inhomogeneous immediately
after the Big Bang. An interesting way to get the answer is through Green
functions. It is understood that A(u) should assume a somewhat di�erent
form at the immediate surroundings of the Big Bang event. This reason-
ing obviously leads to second-order operations. Let us take equation (159),
which near the Big Bang requires

1− 1

2

u

1 +A(u)

dA(u)

du
= 0, (180)

or
dA(u)

du
= −2 (1 +A(u))

u
. (181)
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Independently of the global matter density time evolution, if we consider,
by physical similarity, this expression valid in the imediate vicinity of a su-
permassive black-hole, we may ask how inhomogeneous is the detivative of
A(u) with respect to the time function u. Stated di�erently, we may deter-
mine function A(u) at high densities for any interval of the time function u,
taking into account that we can only evaluate the inhomogeneity of dA(u)
by applying a "less local" operator than the �rst order derivative. This "less
local" operator is precisely the second order derivative 20. Then,

d2A(u)

du2
= −

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]
, (182)

that is,
d2A(u)

du2
= −f(u), (183)

which has the form of equation (162). Given that Green's function on the
left of the point ζ is di�erent if taken on the right, we can write

A(u) = (1− u)

∫ u

0.5

dζ (2ζ − 1)

[
2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]

+ (2u− 1)

∫ 1

u

dζ (1− ζ)

[
2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]
. (184)

To verify this solution we must apply the fundamental theorem of calculus
and get

A′(u)

= (1− u) (2u− 1)

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]
−
∫ u

0.5

dζ (2ζ − 1)

×
[

2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]
−(2u− 1) (1− u)

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]
+2

∫ 1

u

dζ (1− ζ)

[
2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]
; (185)

A′(u) = −
∫ u

0.5

dζ (2ζ − 1)

[
2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]
+2

∫ 1

u

dζ (1− ζ)

[
2

ζ

dA(ζ)

dζ
− 2

ζ2
(1 +A(ζ))

]
. (186)

20 For a while it was thought to represent a given nonlocal aspect by means of suc-
cessive di�erentiations, which would surely imply in an in�nite number of derivatives
and, therefore, to an absolute indetermination. Indeed, each derivative produces a less
local e�ect than the previous one, so that in�nite derivatives are necessary to arrive at
a nonlocal physical representation.
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Therefore,

A′′(u) = − (2u− 1)

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]

−2 (1− u)

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]
= −

[
2

u

dA(u)

du
− 2

u2
(1 +A(u))

]
= −f(x). (187)

Some �nal comments

Supergravity is, of course, a very attractive theory in the sense that, as
pointed out by Wess , we may say that we understand a given system if we
�nd a symmetry (or a supersymmetry) in the dynamics of this system [54].
For instance, in terms of canonical commutation relations, supersymmetry
reads the energy momentum density tensor as a spin 2 object which is the
graviton. But, even if we accept the recognized symmetries as de additional
dimensions constituting the inner space of the system, the inexorable fact
is that those supersymmetries remains year by year an experimental hope,
perhaps during a never ending wait.

One thing I learned as a theoretical physicist is that one can never
blindly accept a model as much as we like it. During last decades, theories
have become more mathematical than physical, in part because we are
dealing phenomenologically with a reality di�cult to access empirically,
and this requires us to be much more cautious in our re�ections on the
validity of our representations. I was particularly happy to see that from my
�rst readings on quantum gravity, the same author who impressed Rovelli
[40], Chris Isham [6], also caught my attention. Since then, I never stopped
to review my own doubts and concerns about quantum gravity. I think
that, at a given moment, I questioned my position on the supersymmetric
theories, but not properly abandoning them, and this is what led me to
the formulation of my quantum approach of the spacetime. Indeed, such
an approach is still necessarily phenomenological, but at least it does not
raise extra dimensions, nor requires the acceptance of hypothetical particles,
being compatible with general relativity.

My points were to make a comprehensive physical explanation of a
model still in progress (not to lead a comparative analysis among other
theories of spacetime quantization), making compatible with general rela-
tivity the Planckian dimensions of certain gravitational singularities where
the short-distance quantum nature of spacetime becomes relevant. Lastly,
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I deduced the form of the speci�c relation between the expectation value
of the expansion (or contraction) rate of the universe and the expectation
value of the energy density as

〈0| gµνd 〈x− ε〉µ d 〈x− ε〉ν |0〉 =

−

[
3

8πGu2
〈
ρ〈t−ε〉0

〉 (1− 1

2

u

1 +A(u)

dA(u)

du

)2
]
du2. (188)

Therefore, I compared quantum spacetime with quantum Riemannian met-
ric, measuring the spacetime shrinkage rate at the compressed region, hav-
ing in mind the energy density, and analyzing some consequences of the
high density at the immediate vicinity of massive objects. Some important
points about the relations of my proposal with the classical formalism of
general relativity were discussed in great detail in reference [46].

Epilogue

The Thesaurus is a new compilation of the �rst Lecture Notes edition,
February 2017. It is an extended version from many suggestions o�ered by
the students at the XIV Summer School of CBPF � Brazilian Center of
Physics Research, January 2017. As the scienti�c Editor of the Brazilience
Journal of Engineering and Applied Physics, I decide to publish this version,
not only to preserve a historical record of the work evolution sponsored
by the Journal, but to honor the participants, P. V. Paraguassú, Victor H.
Alencar, V. Valadão, Rui Aquino, M. P. Macedo and Patrick F. Alexandrino
� now friends of mine �, and my old master, José Abdalla Helayël-Neto
(the partnership of so many years continues!). For all of them, without
whom this work would not succeed, I dedicate this special edition.
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Appendix I

Re�ections on the nature of the movement

It is curious how relativity is admitted at the same time that bodies are
still accepted as spatial objects moving within "another" space, appar-
ently dissociated from them. The arti�ce of dividing the world into macro
and micro physical images does not help to solve the paradox, since there
must be a unique nature for everything, regardless of how humanity per-
ceives it. I think the problem is solved by a very simple mental procedure.
Imagine that, initially, the space was restricted to a point coincident with
an elemental punctual being; moreover, it is appropriate that the term "ex-
pansion" refers to a representation consisting of a continuous �uxion of
points (as physicists, we borrow from mathematics the objects necessary
for the assembly of our constructs, without expecting that mathematicians
understand us). Our punctual friend would not go anywhere con�ned to his
sharp prison. Suppose that suddenly a point immediately adjacent to the
�rst appears. Our hero could go back and forth from one point to the other,
provided the continuity of the interval between the two points was guaran-
teed. In other words, it is only possible to go from one point to another if
there is �uxion, that is, continuous expansion of the space between them,
however close they may be (a static interval is an abstraction belonging to
geometry, not to physics). At a certain moment, as new points are created,
our hero (which is also constituted of space, and, therefore, is under the
same laws of �uxion) does not realize that his own being likewise expands
into new points, establishing a permanent scale ratio between it and its
contiguous universe. Such point �uxion is virtually inexhaustible, so that
to go from point A to point B is a feasible action simply because A and B
are continually recreated along with the in�nity of points separating them.
Thus, it is the space that moves in and by itself.

Oddly enough, all this digression arose from a discussion of time machine
e�ects that could occur under extreme gravitational conditions [44]. In this
context, the crucial question is: in what way could the exclusion of space
be represented in a geodetic path without nulling the spatial components
of the metric tensor? This could happen in an exotic region in which the
expansion was counterfeited by an intense gravitational pressure. So, if we
assume that there is displacement only because space is continually expand-
ing everywhere and in all directions, then a force opposing this expansion
necessarily opposes any attempt of displacement. The phenomenological
model for this theory was based on the zone of con�ict between two coor-
bitant massive black holes, which inevitably led to a quantum spacetime
theory founded on the thesis of �uxions.
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Although the idea of �uxions is enlightening as a principle, it does not
lend itself in its original state to reporting useful quantities to the physicist.
For this reason, it is much more interesting to talk about a rate of change
of an in�nitesimal interval of �uxion. Such an interval de�nes our quantum
of spacetime.
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Appendix II

Understanding entanglement

It was pointed that quantum processing was born from "purely philosoph-
ically motivated questions" (Walther, 2006)21 on non-locality and com-
pleteness of quantum mechanics fomented mainly by Einstein from his col-
laborative work with Podolsky and Rosen in 1935. In fact, as once observed,
it was Einstein whom restored in modern science the Cartesian metaphys-
ical sense of philosophy, turning physics into a real theory of knowledge
(Charon, 1967)22 . This important note remembers to us that philosophy
will always be present in the process of creation. It is precisely its absence
that determines little creativity that prevails today in all �elds. Thus, to
understand what is entanglement it will be necessary a re�ective process of
reconstruction of the conceptual foundations of physics, which will lead to
a comprehensive review of the applicability of the notion of causality.

The main controversies of quantum mechanics ever resided in the di�-
culty of the human mind to separate the physical fact from its perception
or representation. Indeed we always work with our perceptions; we took
from them the full potential of human development and survival o�ered,
creating representations for all we observe. There was a time when I was
a follower of a kind of fruitless and paralyzing materialism that insisted to
reify the world. Later, in�uenced by some physicists adepts of the opera-
tionalism, I came also to sympathize with the dresser and foolish idea that
the only thing that matters is the calculation and not the ultimate nature
of things. Thanks to my growing interest in quantum computing, I could
deepen those controversial discussions and reach my own conclusions about
them. Of course, long before the seventies there were eloquent speeches
from the great thinkers of modern physics. Weizsäcker , for instance, in
the Spanish version of 1974: El átomo no es inmediatamente perceptible
para nuestros sentidos, y cualquier experimento lleva sólo una determinada
propiedad del átomo al ámbito de una perceptibilidad mediata (Weizsäcker,
1974)23. But that was still little; not just to observe a predicate and de-
scribe it by means of classical concepts. It was necessary a phenomenal
texture made by the experimental apparatus from which one could then

21 Walther, P., Zeilinger, A., Quantum Entanglement, Puri�cation, and Linear-Optics
Quantum Gates with Photonic Qubits, in L. Accardi, M. Ohya, N. Watanabe (Eds),
Quantum Probability and White Noise Analysis 19, Singapore, World Scienti�c Publish-
ing Co, 360-369 (2006).
22 Charon, J., De la �sica al hombre. Madrid: Ediciones Guadarrama, 1967.
23 Weizsäcker, C. von, La imagen física del mundo. Madrid: Biblioteca de Autores
Cristianos, 1974.
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extract useful measurements (information). In this it would lie a deepening
of the famous complementarity of Bohr: the ultimate hidden object and its
accessible and inseparable image.

Inspired by those philosophical texts from the �rst half of the twenti-
eth century and early second half, I could re�ne my ideas and reach an
understanding which I consider acceptable, although limited by the nature
of human thought. Now I believe that the understanding of the quantum
entanglement, one of the most intriguing phenomena of the quantum world,
rises, for happiness of the philosophers, in a re�ection on the edge of a pool.
One summer night, I sat in a chair right in front of a lighted lamp whose
�ickering light was re�ected in the pool. The image of the lamp stretched
like a rubber with the ripples of the water and sometimes came to dou-
ble or even to quintuple depending on the swings of the water. Both, the
lamp and its images in water, are real, belonging to the world of mater
and perceptions. But imagine that we could not see the lamp, only their
images re�ected in the water. We would think that two objects born of a
unique (duplicate picture) would be irrevocably united, although separated;
any change in one of them would "cause" an instantaneous change in the
other. With respect to the quantum world is passing up something similar.
We have no direct access to the ultimate reality (as the hidden lamp), only
to the images produced by our experiments. What we see are the "pictures
in the pool" and these are as real as the object that produced them.
Clearly, these images carry information from the ultimate object, which
makes them tractable to control. Instead of using the ultimate object we
use them with all their informational potential. This potential is the base
of the teleport process, since we teleport physical states, not matter in it-
self. In short, the quantum world is so light and sensible to our presence
that it would be impossible to get direct bene�ts from their objects. All we
can do is work with "pools". As Weizsäcker said: Todo experimento es un
acto material que es simultáneamente um acto de percepción (Weizsäcker,
1974).


