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Abstract: Present article carries out an objective review of the Lemaître-Tolman-Bondi inhomogeneous cosmology, emphasizing 
its main theoretical and observational features, showing that up to this moment it is not possible to reject such model based on current 

data. The model is fine-tuned to type Ia supernovae data. Sunyaev-Zel’dovich effect is discussed in that cosmology. 
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1. Introduction 

   At small length scales it was observed 
deviations from the postulated homogeneity of 
the Universe at large scales, a fact that imposes 
the need to investigate whether the 
Friedman-Lemaître-Robertson-Walker (FLRW) 
metric is really adequate to describe the 
accelerated cosmological expansion. 
 
   The Lemaître-Tolman-Bondi (LTB) 
cosmology have been applied with some 
interesting results as an alternative to explain the 
universe without cosmological constant at 
scales O(10)h-1Mpc or even larger. In spite of 
the challenges it confronts and the objections 
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faced to its major presuppositions, there is a 
general feeling that compels all of us to agree 
with the fact that it shed new lights on many 
critical questions, however we have to live 
together with more restrictive conditions 
accepting a null Λ. Nevertheless, the 
“trademark” of LTB models is to consider 
cosmologies in which the inhomogeneous 
universe is filled by non-rotational dust matter 
and not the null Λ itself; it is possible to work in 
LTB with not-null Λ and compare the results 
with the standard FLRW model. 
 
   In the past fifty or sixty years, philosophy 
and science came near in such a way that 
nobody may neglect the real gains for both 
sides. Nonetheless, in several situations 
philosophical discussions stay merely idealistic, 
with no effective contribution to clarify 
scientific dilemmas.  That is the case of a 
common idealistic objection pointed out to LTB 
models: how anthropocentric is the placement 
of human observers in the center of the 
universe? To refuse the objection implicit in 
such question it is enough to remember that all 
we really have are the measurements we do here 
in the Earth, not in a “NGC”; we don’t know 
what is going on there. Thus, to suppose to be in 
the center or not is a pseudo-dilemma to be 
solved bearing in mind only technical 
advantages. For LTB models it seems very 
interesting, from a theoretical view point, to put 
the Earth in the center of the universe. Besides, 
this question may be simply opposite by another 
that asks where the center of a cosmological 
spherical surface is. 
 
   The next objection, whether so we can say, is 
that with three arbitrary parameters the LTB 
model virtually may adjust itself to any 
observational data. This is a naïve criticism to 

say the least, and here philosophy comes to 
contribute. Observation and theory live in a 
dialectic balance, in which both are always 
talking with one another; observation paints a 
brain canvas with inexact images; theory tries to 
simulate the causal chain behind the painted 
canvas. They are very far from perfection, but 
they are constantly gauging each other. Theory 
looks for the best fitting to observational data 
and chances some predictions; observation 
supplies the realistic foundations to discuss 
theory and to construct models, but also accepts 
“orders” from theory (predictions). So, the 
scientific question is not how much parameters 
are needed to that conversation between theory 
and observation, but how large is the data best 
covered by the theory, how much distinct 
sources of observational data are well gauged by 
the theory at the same time. What we expect 
from a LTB model is its simultaneous and 
reasonable concordance with data from 
microwave background, from SN Ia, from 
structure formation and so forth. Faced with the 
ontological and inevitable lack of complete 
isomorphism between model and reality, we 
cannot be so radical in criticize theories which, 
in resume, do what is possible to do. 
 
   Let me do some considerations about the 
fundamental choice of the present proposal: 
  

a) I shall be treating the situation in which 
there is a unique geodesic, so I do not 
deal a priori with evolution.  

b) As pointed out by Brouzakis et al. [1], 
the LTB metric can reproduce any 
relation between luminosity distance and 
redshift, which signifies that type Ia 
supernovae data may proceed from an 
inhomogeneous distribution of matter 
having ground in that metric. In this 
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investigation I precisely shall describe, 
by the connection between geometry 
(curvature) and cosmological redshift, a 
representation of the luminosity distance 
as direct consequence of the LTB 
inhomogeneous context. 

 

2. The standard approach 

2-1. A bit of history 
 
   At 1917, shorter there after Einstein’s 
announcement of his cosmological model,  it 
appeared a seminal paper published by the 
Dutch astronomer de Sitter in which he showed 
that an empty universe need not have the metric 
of Minkowski, usually considered as the limit of 
the relativistic metric at large distances of all 
gravitating matter [2]. Connecting cosmological 
constant with commoving radius, de Sitter 
world-line element assumes the form 
 

2 2
2 2 2 2 2 2 2

2 2

2

sin 1 ,
1

dr rds r d r d dt
r R
R

  
 

      
 

where the constant curvature is 2

1
3R


 . 

 
   The most interesting feature I emphasize here 
is that Schwarzschild’s exterior solution, 
 

2
2 2 2

221
3

drds r d
m r
r

   
 

 

2
2 2 2 22sin 1

3
m rr d dt
r

 
 

    
 

 

for a static field in the empty space surrounding 
a massive sphere, falls into de Sitter world-line 
element if the mass of the sphere tends to zero at 
the origin. Tolman referred to this last equation 
as a very important example of a cosmological 

line element related to an inhomogeneous model 
[3], even though today it is clear that at large 
scales Schwarzschild geometry is not proper to 
deal with inhomogeneities.  
   Generalizing, we may put m=0, which is the 
same thing to suppose an universe completely 
empty, so that 
 

2 2
2 2 2 2 2 2 2

2 sin 1  
31

3

dr rds r d r d dt
r

  
 
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 
2 2

2 2 2 2 2 2
21 sin .

3 1
3

r drds dt r d d
r

  
 

         

 
2-2. The contemporary understanding of 
inhomogeneous cosmology 
 
   Although technology has undergone 
remarkable advances from Lemaître to now, the 
limitations in our observational tools are still, 
crudely speaking, very real. It is difficult to 
imagine in what degree those limitations shall 
be minimized during the next thirty/fifty years. 
Gaps of information about the true content of 
the universe have been diminished, thanks to the 
great effort of scientific community, but many 
crucial points remain unsolved even regarding 
the good approximations of ΛCDM 
representations. In this scenario, LTB 
cosmology emerges as a natural option not only 
to try to account for the apparent cosmic 
acceleration with no Λ, but to model a universe 
beyond appearances.   
 
   I begin writing Einstein’s field equation 
(Λgμν is placed at the left-hand side since I 
always emphasize possible changes in 
geometry), 
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1 1
2 Pl

R R T
M      g g , 

which reduces to  

         2 2

1 1

Pl Pl

G T u u
M M             (1) 

for null .  Here, 1/ 8Pl NM G  (reduced 

Planck mass),   is the energy density and  u  

the speed of the matter flow, such that u u  = 

-1. Spherical symmetry leads to an exact 
solution of equation (1). 
 
   The standard LTB metric space provides a 
geometry embedded in a supposed universe 
inhomogeneously filled by a pressure-negligible 
dust matter. It must be clear that this supposition 
is not perturbatively related to any FRW 
cosmology. The associated world-line element 
is given by  

2 2
2 2 2 2( , ) ˆ( , )

1 ( )
R r t drds dt R r t d

f r


    


, 

with coordinates    {1,2,3} , ,ix r    synchronous 

commoving with matter (or dxi/dt = 0). 

Cosmological constant 0  ; f(r) is an arbitrary 

function only explicit in r. In a classical sense, 

functions R(r,t) and f(r) are related in 

accordance to Einstein’s equations [4] by 

         2
2

1 ( )( , ) ( )
( , )Pl

m rR r t f r
M R r t

  ;      (2) 

          2
( )( , )

( , ) ( , )
rmr t

R r t R r t






,          (3) 

where m(r) denotes an arbitrary function that 
describes the energy (gravitational baryonic 
mass) contained inside commoving radius r. It 
is worthwhile to comment that some authors 
emphasize the model focusing mass, some 
focusing curvature; nowadays it is a matter of 
personal taste, and I shall develop formal 
considerations on curvature, since my focus is 
on the theoretical behavior of the model when 
we associate explicitly geometry and redshift in 
LTB cosmology.   

   Geodesic equation 0 
    takes the 

form 
22

2
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1
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where  

2
2 2dθ d+sin

ds ds


       
   

2

L . 

The integration of the first equation gives  
 

     
2 22

2 2 0.        
1

dt R dr R
dv f dv

            
L (4) 

 
Because of the positive-definite quantities of the 
two last terms in the above equation1, to fulfill 

                                                
1 The arbitrary function f is assumed to be among the following 
three cases: f = 0; f > 0; 0 > f >-1. 
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the geodesic null condition implies the negative 
sign of the first term. 
 
   From LTB standard approach, redshift is 
given by  

           
0

( , )(1 )
1

e R r t
dr

r
In z

f


 




ò         (5)                            

for a receiver at r = 0, collecting signals from a 
emitter source at r = re . 
 

3. The unique geodesic and the luminosity 
distance 

   On one hand, according to differential 
representation, light rays that are traveling 

radially ( 2 2 2sin 0d d    ) and moving inward 

follow the null geodesic 

               
( , )

1
R r t

dt dr
f


 


,           (6)                              

From here we may say that  

              
1

 =
( , )

f
dr dt

R r t



 .          (7) 

                               
Inserting into equation (5), it follows 
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f f
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


 
       

 
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                                          (8) 
 
Once that we have expression (7), there is no 
mathematical impediment to put  
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



ò

ò
(9) 

As exposed previously, f is not an explicit 
function of t, but time and space are very 
entangled in relativity to discard ad hoc a 
profound physical analysis of the implications 
that function f can bring as implicit function of 
time. Besides, there is no loss of generality in 
equation (9), since we preserve the initial form 
at the left-hand side if  

0f  . 

   On the observer’s past null cone, coordinate r 
may be chosen so that holds the gauge  

( )

1
R r

f



=1 [5]. 

   We can now rearrange equation (9), 
introducing this choice and doing 
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0

1

2 1

et f dt
f






ò .          (10)                                                                     

In a certain manner, this procedure makes 
possible to maintain evolution after we have 
fixed unique geodesic and renders the problem 
more attractive from the point of view of the 
cosmological redshift.  
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   From expression (10) I write luminosity 
distance as 

           
 

0

1/ 2
1

( )

te f dt
f

DL R r e
ò






.      (11) 

 
Now, the distance modulus, a direct measure of 
the luminosity distance, is defined in Riess et al. 
[6] as 

105log
1

DL
Mpc


 

  
 

25,  

but I rewrite this formula in a more general 
manner [7], 

105log
1

DL
Mpc


 

  
 

M , 

where M  is a constant to be found in 
accordance to the fitting with an FRW model. 
Inserting expression (11), it comes  

 
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 

  
  
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
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Trivial integration gives 
 

01/ 2 (1 )

10
( )5log

1

teln fR r eDL
Mpc

  
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 

|
M .  (12) 

 

4. The LTB model applied to type Ia SN data 

 
   Now I introduce the following three 
quantities as in reference [7]: 
 

       2

3

( , ) ,
,
,

R r t ar
f Ar
F Br




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where a  is the scale factor, A and B are two 
LTB arbitrary functions to be defined. We 
relate a , A and B by the differential equation 
 

                 2 Ba A
a

  .              (13) 

The 0 A  FRW cosmology assumes the 
standard form 2 / 3a t for 4 / 9B  . To verify it is 
enough to get the solution of equation (13) for 
t0= 0,   

0
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u
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   We note that, due to coordinate freedom to 
deal with r, B would be also a function which 
converges to 4/9 at the infinite. In the LTB 
model, accordingly the choice of A and B, 
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Function A has the form  

2
1

1 (c )
A

r



 [7], 

with c being a best fit constant. 
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   At last, according to Garfinkle (private 
communication), it was used the “effective 
magnitude” of Perlmutter et al. [8] defined as an 
“effective rest-frame B magnitude”. Remaining 
mismatches of wavelength coverage were 
corrected by the “cross-filter K-correction”. The 
simulations were performed for a model with 
parameters ΩM and c=8.5. The value of c was 
chosen for best fit with supernova data.  
 
   Figure 1 exhibits the level of concordance 
between supernovae data (with error bars) and 
the proposed model. Figures 2 and 3 show the 
observational luminosity distance and check it 
with present model.   
 

5. The Sunyaev-Zel’dovich effect in LTB 
model 

   Rashid Sunyaev and Yakov Zel’dovich [12] 
predicted that during the path at the vicinity of a 
galaxy cluster some photons of the cosmic 
microwave background (CMB) perceive 
Compton scattering of hot electrons inside the 
cluster. The distortions (referred to that 
scattering) produced in the black-body spectrum 
of the CMB settle the so called 
Sunyaev-Zel’dovich (SZ) effect. If the cluster 
has a peculiar velocity (non-zero velocity along 
the watching line), there is a kinetic SZ and the 
study of its watching line component may give 
information about the motion of the cluster. The 
peculiar velocity (radial) is given by Vr= 
cz-rH0, where z is the cluster redshift and r its 
distance. 
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24

LTB plot, =0.3 , c= 8.5

                                                A=
1

1 cR
a
2z

m

 
Figure 1. Plot of effective magnitude versus redshift and 

supernova data from Riess tables (gold accurate). 
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1  f
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D
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Figure 2. Plot of the supernova data (DL versus redshift) from 

Riess tables (gold accurate). 
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Figure 3. Plot of DL versus redshift (equation (12)) and the 

supernova data from Riess tables (gold accurate). 

 
   For nearby clusters ( 0.2z  ), X-ray 
observations combined with the intensity 
variation including SZ effect allow to evaluate 
the FRW angular diameter distance DA in terms 
of redshift, deceleration parameter and Hubble 
constant. If 0  , 
 

    0 0 0

2 2
0 0

( 1) 1 2 1

1A

q z q q zcD
H q z

    
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 
 

.   (14) 

 
   The distances to galaxy clusters were 
determined from joint analysis of X-ray 
observations and of 30 GHz interferometric 
SZE observations [16]. For comparative 
purposes, we may refer to a spherical isothermal 
model (the β model) by the general expression 
of the SZE angular diameter distance  
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R
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n T d
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








  
   
 
 
 





|

|
      (15) 

where 0T  is the central thermodynamic SZE 

temperature decrement (or increment), 
o

CMB 2.728 KT  is the temperature of the CMB, 

H0e  is the so called “X-ray cooling function”2 

in cgs units ( He  is the same but taken at the 

cluster rest frame), ( , )ex Tf  is the frequency 

dependence of the SZE with CMB/x h kT , T  

is the Thompson cross section, 0xS  is the 

normalization of the X-ray surface brightness 

xS used in the fit, c  is the characteristic 

angular scale of the galaxy cluster, en  is the 

electron number density, 0en  is the cluster 

central density,   is the line-of-sight length in 

units of the characteristic radius c c Ar D (see 

[16, 17] for more details).  
 
   In fact, this way to calculate distances 
currently involves high uncertainties because 

                                                
2 The cooling function enters basically as the conversion 
between detector counts and cgs units. 
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rarely clusters exhibit spherical symmetry in the 
distribution of the gas. Nevertheless, it is 
accepted that any important bias is introduced in 
the Hubble parameter inferred from a large 
sample of clusters.  
 
 5.1. The contemporary understanding of 
inhomogeneous cosmology 
 
   Now we can imagine a cosmological LTB 
<<bubble>> embedded in a FLRW background, 
in such a way that we can ask whether the 
angular diameter distance measured from the 
background would be the same measured from 
the bubble. This question makes sense, since it 
would be careless to neglect the effects of 
inhomogeneity on distance measurements.  
 
   In Figure 4, I classified 38 clusters 
[13,14,20], according to the Chandra X-ray 
Observatory3, by dissimilarities in the pair of 
variables (DA, z), constructing 6 fiduciary 
mega-clusters adopting for each one the 
medians of z and of DA, as well as the error 
averages in DA. In the simulations, it was 
noteworthy that the curvature of DA is sensitive 
to small changes in the gauge parameter Γ. To 
get an idea, by adopting the natural gauge (Γ = 
1), the curve referring to the observer centered 
on the cavity LTB becomes very close to the 
curve in FLRW. In the plot, the respective 
theoretical curves defined from inside the LTB 
cavity4 (orange line) and from external FLRW 
background (green line) were superposed. Error 
bars include statistical uncertainties intrinsic to 
                                                
3  Indeed, there are now better mastered new catalogs 
extracted from the larger SDSS survey, in particular the 
catalog redMaPPer [18]. Also, the cluster catalogs 
extracted from the Planck Collaboration, SPT and ACT 
data also increased the number of known clusters [19]. 
4  The calculation principles for adjusting the angular 
diameter distance as a function of inhomogeneity are the 
subject for another publication. 

X-ray observations and SZ effect 
measurements.  
 
   At the specified conditions, the curve 
referring to the observation taken from the LTB 
bubble shows a better adjustment to the 
observational data. The uncertainties in the 
registration of angular diameter distance are 
such that it would be, to say the least, arbitrary 
any definite conclusion based on such a 
precarious observational conjuncture.  
 
 
6. Conclusions 
 
   The LTB model discussed here showed high 
potential to explain simultaneously data from 
type Ia SN and from galaxy clusters, including 
SZ effect in the latest. 
 
   In different approaches, time derivative of 
the curvature was recently treated in a 
perturbative context on large scales [10] and in 
interesting discussions on Two Measures Field 
Theory (TMT) in the context of spatially flat 
FRW cosmology [11]. Also less orthodox 
approaches has been defended considering 
variable deceleration parameter models [15]. 
According to my view, I claim that curvature 
time derivative provides an additional trace of 
high inhomogeneity at large scales and it is free 
from singularities as f = 0; f > 0; 0 > f >-1. 
Intuitively, df/dt would be negligible at small 
scales. Besides, its introduction in the model 
partially rescues evolution lost with the choice 
of the unique geodesic. Luminosity distance, 
rewritten as an explicit function of the 
curvature, is interpreted as a possible theoretical 
alternative to account for the dimming of distant 
type Ia SN apparent luminosity. 
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   In short, time variable function f resumes 
three fundamental features: a) the redshift is 
taken as a function of the curvature and its time 
derivative (for large radii). For small radii, it is 
enough the relativistic approximation (r = 
const.); b) redshift entangled with curvature 
may be seen as another tool to “observe” 
curvature itself, and time differentiable 
curvature is a reasonable supposition at large 
scales for the inhomogeneous expanding 
universe; c) theoretical LTB-SZE line DA versus 
z tends to have a curvature more open than the 
well known FRW-SZE curve, which means that 
larger angular diameter distances at high 
redshifts would be best represented by the 
former. 
 
   As I pointed out in the beginning of this 
article, to validate LTB spacetime as a viable 
model it is necessary to perform more 
simulations with different cosmological data. I 
am just working to test the compatibility of the 
model also with data from galaxy counts.   
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Figure 4. Fiduciary mega-clusters constructed from the dissimilarities of the 38 elementary clusters calculated on the pair of variables 

(DA, z) and organized by the method of partition by medoids, Γ = 1.19. The matrix of dissimilarities computed the roots of the sums of 
the squares of the differences between the elementary clusters. The reader must note the degree of fit of the curve defined from within 

the LTB cavity (in orange) compared to the FLRW curve (in green). 
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Appendix  
   We may prove that the introduction of df/dt is 
consistent with the choice of large scale 
observations. Let us take the LTB arbitrary 
function defined previously, 

2
2

21 (c )
rf Ar

r
 


. 

First of all, we note that the time derivative is 
given by 

2 3

2 2 2 2 2

2 2
1 (1 )

rr c r rf
c r c r

 
 

  . 

 
By comparison, if 1r  , the second term of the 
right-hand side is much smaller than the prime. 
So, for small r,  

2 2

2
1

rrf
c r




  

 
is a good approximation.  
 

 


